A major cause of mortality in epilepsy patients is sudden unexpected death in epilepsy (SUDEP). Post-ictal respiratory dysfunction following generalized convulsive seizures is most commonly observed in witnessed cases of human SUDEP. DBA mouse models of SUDEP are induced by audiogenic seizures (AGSz) and show high incidences of seizure-induced death due to respiratory depression. The relatively low incidence of human SUDEP suggests that it may be useful to examine seizure-associated death in an AGSz model that rarely exhibits sudden death, such as genetically epilepsy-prone rats (GEPR-9s). Adenosine is released extensively during seizures and depresses respiration, which may contribute to seizure-induced death. The present study examined the effects of inhibiting adenosine metabolism on the durations of post-ictal depression (PID) and respiratory distress (RD), changes in blood oxygen saturation (% SpO2), and the incidence of post-seizure mortality in GEPR-9s. Systemic administration of adenosine metabolism inhibitors, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA, 30 mg/kg) with 5-Iodotubericidin (5-ITU, 3mg/kg) in GEPR-9s resulted in significant changes in the duration of AGSz-induced PID as compared to vehicle in both genders. These agents also significantly increased the duration of post-seizure RD and significantly decreased the mean% SpO2 after AGSz, as compared to vehicle but only in females. Subsequently, we observed that the incidences of death in both genders 12-48 h post-seizure were significantly greater in drug vs. vehicle treatment. The incidence of death in females was also significantly higher than in males, which is consistent with the elevated seizure sensitivity of female GEPR-9s developmentally. These results support a potentially important role of elevated adenosine levels following generalized seizures in the increased incidence of death in GEPR-9s induced by adenosine metabolism inhibitors. These findings may also be relevant to human SUDEP, in light of the elevated adenosine levels that occur post-ictally in humans and its respiratory depressant actions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2015.11.001DOI Listing

Publication Analysis

Top Keywords

adenosine metabolism
16
human sudep
12
post-ictal depression
8
death
8
seizure-induced death
8
metabolism inhibitors
8
compared vehicle
8
incidence death
8
elevated adenosine
8
adenosine levels
8

Similar Publications

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

Abnormalities in mitochondrial energy metabolism induced by cryopreservation negatively affect goat sperm motility.

Front Vet Sci

January 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.

The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is a malignant tumor. Methyltransferase-like 7B (MEETL7B) is a methyltransferase and its role in BC has not yet been revealed.

Method: Stable METTL7B knockdown or overexpression were achieved by lentiviral transduction in SW780 and TCCSUP cell lines.

View Article and Find Full Text PDF

Beyond destruction: emerging roles of the E3 ubiquitin ligase Hakai.

Cell Mol Biol Lett

January 2025

Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain.

Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N-methyladenosine (mA) writer complex and its impact on the methylation of RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!