Measuring real-time gene activity in the brains of freely moving animals presents a challenging issue in neuroscience research. Circadian gene expression in neurons of the suprachiasmatic nucleus (SCN), a small nucleus in the hypothalamus, is reflected in behavioral rhythmicity. Cellular oscillatory gene expression is generated by a transcription-translation feedback loop of clock genes including 2 oscillatory genes, Per1 and Per2. Here we have succeeded in real-time monitoring of Per1 and Per2 transcription separately by detecting the bioluminescence of luciferase (luc) reporters using a plastic optical fiber inserted into the SCN of freely moving rats. Per1-luc and Per2-luc rhythms peaked in the middle and late subjective day, respectively, which was confirmed by quantitative PCR-based measurements of SCN tissue samples. Studies of in vivo transcriptional states of clock genes in freely moving animals should improve our understanding of how clock gene expression is reflected in behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0748730415621412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!