The generation of a targeting agent that strictly binds to IL13Rα2 will significantly expand the therapeutic potential for the treatment of IL13Rα2-expressing cancers. In order to fulfill this goal, we generated a single-chain antibody (scFv47) from our parental IL13Rα2 monoclonal antibody and tested its binding properties. Furthermore, to demonstrate the potential therapeutic applicability of scFv47, we engineered an adenovirus by incorporating scFv47 as the targeting moiety in the viral fiber and characterized its properties in vitro and in vivo. The scFv47 binds to human recombinant IL13Rα2, but not to IL13Rα1 with a high affinity of 0.9 · 10(-9) M, similar to that of the parental antibody. Moreover, the scFv47 successfully redirects adenovirus to IL13Rα2 expressing glioma cells both in vitro and in vivo. Our data validate scFv47 as a highly selective IL13Rα2 targeting agent and justify further development of scFv47-modified oncolytic adenovirus and other therapeutics for the treatment of IL13Rα2-expressing glioma and other malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677343 | PMC |
http://dx.doi.org/10.1038/srep18133 | DOI Listing |
Analyst
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with (strain C50041) to induce diverse antibodies.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.
View Article and Find Full Text PDFMatrix Biol
February 2025
Department of Life Sciences, Ewha Womans University, Seoul 03760, South Korea. Electronic address:
Disrupting the interaction between matrix metalloproteinase-7 (MMP-7) and syndecan-2 (SDC-2) can yield anticancer effects in colon cancer cells. Here, a single-chain variable fragment (scFv) targeting the pro-domain of MMP-7 was generated as a potential candidate anticancer agent. Among the generated scFvs, those designated 1B7 and 1C3 showed the strongest abilities to inhibit the ability of MMP-7 pro-domain to directly interact with SDC-2 in vitro and decrease the cancer activities of human HT29 colon adenocarcinoma cells.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
Chimeric antigen receptor-transduced T (CAR-T) cell therapy is an effective cell therapy against advanced hematological tumors. However, the use of autologous T cells limits its timely and universal generation. Allogeneic CAR-T cell therapy may be a good alternative as a ready-to-use therapeutic.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
Background: Granzyme B (GrB) is a key effector molecule, delivered by cytotoxic T lymphocytes and natural killer cells during immune surveillance to induce cell death. Fusion proteins and immunoconjugates represent an innovative therapeutic approach to specifically deliver a deadly payload to target cells. Epithelial membrane protein-2 (EMP2) is highly expressed in invasive breast cancer (BC), including triple-negative BC (TNBC), and represents an attractive therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!