Introduction: Acellular fish skin of the Atlantic cod (Gadus morhua) is being used to treat chronic wounds. The prevalence of diabetes and the comorbidity of chronic wounds is increasing globally. The aim of the study was to assess the biocompatibility and biological characteristics of acellular fish skin, important for tissue repair.
Materials And Methods: The structure of the acellular fish skin was examined with microscopy. Biocompatibility of the graft was conducted by a specialized certified laboratory. Protein extracts from the material were analyzed using gel electrophoresis. Cytokine levels were measured with an enzyme linked immunosorbent assay (ELISA). Angiogenic properties were assessed with a chick chorioallantoic membrane (chick CAM) assay.
Results: The structure of acellular fish skin is porous and the material is biocompatible. Electrophoresis revealed proteins around the size 115-130 kDa, indicative of collagens. The material did not have significant effect on IL-10, IL-12p40, IL-6 or TNF-α secretion from monocytes or macrophages. Acellular fish skin has significant effect on angiogenesis in the chick CAM assay.
Conclusion: The acellular fish skin is not toxic and is not likely to promote inflammatory responses. The graft contains collagen I, promotes angiogenesis and supports cellular ingrowth. Compared to similar products made from mammalian sources, acellular fish skin does not confer a disease risk and contains more bioactive compounds, due to less severe processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17992/lbl.2015.12.54 | DOI Listing |
J Sci Food Agric
December 2024
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.
Background: It is important to study the physicochemical properties of tilapia (Oreochromis mossambicus) skin gelatin and the changes in dipeptidyl peptidase IV (DPP-IV) inhibition activity during gastrointestinal digestion in order to understand and exploit the potential of tilapia as a source of DPP-IV inhibitory peptides.
Results: The DPP-IV inhibition of fish-skin gelatin increased from 9.92 ± 0.
With the rapid emergence of pufferfish aquaculture and processing industries, fish skin is underutilized as a byproduct of processing, leading to resource waste. In this study, skin collagen (TBSC) was extracted by acetic acid solubilization and its physicochemical properties were analyzed. The effects of TBSC and the TBSC hydrolysate (TBSCH) on ultraviolet (UV) irradiation-induced photoaging were investigated using a mouse model.
View Article and Find Full Text PDFGelatin is one of the most widely used food ingredients, with wide applications in the food industry as stabilizing, gelling, and foaming agents. Fish skin is the basic source of gelatin, which contains a high amount of protein. The results show that the proximate compositions (protein, fat, ash, moisture, fiber, carbohydrate, and total energy) of the optimized ice cream product with ingredient compositions of (30% milk, 40% avocado pulp, 10% sugar, 15% gelatin, and 5% cream) show values of 3.
View Article and Find Full Text PDFSe Pu
January 2025
Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult.
View Article and Find Full Text PDFLett Appl Microbiol
December 2024
Amrita School for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi-682041, India.
Mycobacterium marinum is a slow growing Non-Tuberculosis Mycobacteria (NTM) known to cause skin and subcutaneous tissue infections known as "fish tank granuloma" in humans. Treatment of M. marinum skin infections can last for several months or even years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!