Human Social Behavior and Demography Drive Patterns of Fine-Scale Dengue Transmission in Endemic Areas of Colombia.

PLoS One

Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Ave, New York, New York, 10027, United States of America.

Published: June 2016

Dengue is known to transmit between humans and A. aegypti mosquitoes living in neighboring houses. Although transmission is thought to be highly heterogeneous in both space and time, little is known about the patterns and drivers of transmission in groups of houses in endemic settings. We carried out surveys of PCR positivity in children residing in 2-block patches of highly endemic cities of Colombia. We found high levels of heterogeneity in PCR positivity, varying from less than 30% in 8 of the 10 patches to 56 and 96%, with the latter patch containing 22 children simultaneously PCR positive (PCR22) for DEN2. We then used an agent-based model to assess the likely eco-epidemiological context of this observation. Our model, simulating daily dengue dynamics over a 20 year period in a single two block patch, suggests that the observed heterogeneity most likely derived from variation in the density of susceptible people. Two aspects of human adaptive behavior were critical to determining this density: external social relationships favoring viral introduction (by susceptible residents or infectious visitors) and immigration of households from non-endemic areas. External social relationships generating frequent viral introduction constituted a particularly strong constraint on susceptible densities, thereby limiting the potential for explosive outbreaks and dampening the impact of heightened vectorial capacity. Dengue transmission can be highly explosive locally, even in neighborhoods with significant immunity in the human population. Variation among neighborhoods in the density of local social networks and rural-to-urban migration is likely to produce significant fine-scale heterogeneity in dengue dynamics, constraining or amplifying the impacts of changes in mosquito populations and cross immunity between serotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684369PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144451PLOS

Publication Analysis

Top Keywords

dengue transmission
8
pcr positivity
8
dengue dynamics
8
external social
8
social relationships
8
viral introduction
8
dengue
5
human social
4
social behavior
4
behavior demography
4

Similar Publications

Uncovering rates at which susceptible individuals become infected with a pathogen, i.e., the force of infection (FOI), is essential for assessing transmission risk and reconstructing distribution of immunity in a population.

View Article and Find Full Text PDF

One of the consequences of the COVID-19 lockdown is that it hinders school-based dengue management interventions. This is due to the closure of schools and the limited availability of online lessons in certain schools. Conversely, the level of basic understanding that primary school children have about the condition is directly related to their likelihood of getting it and their ability to modify their behaviour to prevent it.

View Article and Find Full Text PDF

Dengue, a mosquito-borne viral disease, continues to pose severe risks to public health and economic stability in tropical and subtropical regions, particularly in developing nations like Bangladesh. The necessity for advanced forecasting mechanisms has never been more critical to enhance the effectiveness of vector control strategies and resource allocations. This study formulates a dynamic data pipeline to forecast dengue incidence based on 13 meteorological variables using a suite of state-of-the-art machine learning models and custom features engineering, achieving an accuracy of 84.

View Article and Find Full Text PDF

Vector-borne diseases pose a major worldwide health concern, impacting more than 1 billion people globally. Among various blood-feeding arthropods, mosquitoes stand out as the primary carriers of diseases significant in both medical and veterinary fields. Hence, comprehending their distinct role fulfilled by different mosquito types is crucial for efficiently addressing and enhancing control measures against mosquito-transmitted diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!