OprG Harnesses the Dynamics of its Extracellular Loops to Transport Small Amino Acids across the Outer Membrane of Pseudomonas aeruginosa.

Structure

Department of Molecular Physiology and Biological Physics, Center for Membrane Biology, University of Virginia, Charlottesville, VA 22908, USA. Electronic address:

Published: December 2015

OprG is an outer membrane protein of Pseudomonas aeruginosa whose function as an antibiotic-sensitive porin has been controversial and not well defined. Circumstantial evidence led to the proposal that OprG might transport hydrophobic compounds by using a lateral gate in the barrel wall thought to be lined by three conserved prolines. To test this hypothesis and to find the physiological substrates of OprG, we reconstituted the purified protein into liposomes and found it to facilitate the transport of small amino acids such as glycine, alanine, valine, and serine, which was confirmed by Pseudomonas growth assays. The structures of wild-type and a critical proline mutant were determined by nuclear magnetic resonance in dihexanoyl-phosphatidylcholine micellar solutions. Both proteins formed eight-stranded β-barrels with flexible extracellular loops. The interfacial prolines did not form a lateral gate in these structures, but loop 3 exhibited restricted motions in the inactive P92A mutant but not in wild-type OprG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699568PMC
http://dx.doi.org/10.1016/j.str.2015.10.009DOI Listing

Publication Analysis

Top Keywords

extracellular loops
8
transport small
8
small amino
8
amino acids
8
outer membrane
8
pseudomonas aeruginosa
8
lateral gate
8
oprg
5
oprg harnesses
4
harnesses dynamics
4

Similar Publications

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.

View Article and Find Full Text PDF

The global resurgence of syphilis has created a potent stimulus for vaccine development. To identify potentially protective antibodies against Treponema pallidum (TPA), we used Pyrococcus furiosus thioredoxin (PfTrx) to display extracellular loops (ECLs) from three TPA outer membrane protein families (outer membrane factors for efflux pumps, eight-stranded β-barrels, and FadLs) to assess their reactivity with immune rabbit serum (IRS). We identified five immunodominant loops from the FadL orthologs TP0856, TP0858 and TP0865 by immunoblotting and ELISA.

View Article and Find Full Text PDF

Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is the most common cancer in women. Likewise, canine mammary tumors (CMT) represent the most common cancer in intact female dogs and develop in the majority spontaneously. Similarities exist in clinical presentation, histopathology, biomarkers, and treatment.

View Article and Find Full Text PDF

Second Generation I-Body AD-214 Attenuates Unilateral Ureteral Obstruction (UUO)-Induced Kidney Fibrosis Through Inhibiting Leukocyte Infiltration and Macrophage Migration.

Int J Mol Sci

December 2024

Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.

Kidney fibrosis is the common pathological pathway in progressive chronic kidney disease (CKD), and current treatments are largely ineffective. The C-X-C chemokine receptor 4 (CXCR4) is crucial to fibrosis development. By using neural cell adhesion molecules as scaffolds with binding loops that mimic the shape of shark antibodies, fully humanized single-domain i-bodies have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!