Symbiosis generally causes an expansion of the niche of each partner along the axis for which a service is mutually provided. However, for other axes, the niche can be restricted to the intersection of each partner's niche and can thus be constrained rather than expanded by mutualism. We explore this phenomenon using Artemia as a model system. This crustacean is able to survive at very high salinities but not at low salinities, although its hemolymph's salinity is close to freshwater. We hypothesized that this low-salinity paradox results from poor performance of its associated microbiota at low salinity. We showed that, in sterile conditions, Artemia had low survival at all salinities when algae were the only source of carbon. In contrast, survival was high at all salinities when fed with yeast. We also demonstrated that bacteria isolated from Artemia's gut reached higher densities at high salinities than at low salinities, including when grown on algae. Taken together, our results show that Artemia can survive at low salinities, but their gut microbiota, which are required for algae digestion, have reduced fitness. Widespread facultative symbiosis may thus be an important determinant of niche limits along axes not specific to the mutualistic interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/682370 | DOI Listing |
Water Res
December 2024
College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:
Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:
Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, College of Science and Engineering, Western Washington University, 516 High Street, Bellingham, WA, 98229, USA.
Fluorescent lifetimes of dissolved organic matter (DOM) and associated physicochemical parameters were measured over 14 months in an estuary in Southern California, USA. Measurements were made on 77 samples from sites near the inlet, mid-estuary, and outlet to maximize the range of physicochemical variables. Time-resolved fluorescence data were well fit to a triexponential model with an intermediate lifetime component (τ: 1 to 5 ns), a long lifetime component (τ: 2 to 15 ns), and a short lifetime component (τ: < 1 ns).
View Article and Find Full Text PDFACS Nano
January 2025
College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!