Objectives: Inflammation is critical in the early phases of wound healing. It has been reported previously that small intestinal and colonic wounds display a more rapid healing than those of other organs. However, the underlying mechanism has not yet been elucidated. Here we examined whether differences in the time course of specified cytokine expression, in colonic and small intestinal anastomotic lesions, might play a major role in this observation in comparison to lesions effecting skin and muscle tissue.

Materials And Methods: Tissue lesions were applied to 36 male Sprague-Dawley rats. Tissue samples were harvested at 1, 3, 5, 7, and 14 days postoperatively with the levels of TNF-α, IL-6, and IFN-α determined by ELISA-derived methods.

Results: The characteristics of TNF-α, IL-6, and IFN-α expression during the healing process for intestinal and colonic lesions were comparable. However, data differed significantly with that observed during healing of skin and muscle lesions. Intestinal and colonic lesions exhibited a significant and sustained increase in specified cytokine levels on day 5 to day 14 as compared with day 1 and 3. Skin and muscle lesions had random or unaltered cytokine levels throughout the study period.

Conclusion: Differences in expression of cytokines TNF-α, IL-6, and IFN-α indicate that these play an important role underlying the more rapid healing processes observed in small intestinal and colonic lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707811PMC
http://dx.doi.org/10.4103/1319-3767.170949DOI Listing

Publication Analysis

Top Keywords

intestinal colonic
20
small intestinal
12
skin muscle
12
tnf-α il-6
12
il-6 ifn-α
12
colonic lesions
12
time course
8
course cytokine
8
rapid healing
8
lesions
8

Similar Publications

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Persistent ascending mesocolon (PAM) is a rare congenital anomaly in ⁓2%-4% of individuals. PAM is associated with various complications, including volvulus of the colon and caecum, bowel perforation, intestinal obstruction, and adhesions. This case is reported on a 48-year-old woman who reported to the Ho Teaching Hospital specialist clinic with a 13-year history of initial painless and reducible paraumbilical swelling.

View Article and Find Full Text PDF

Leaky gut syndrome (LGS) is caused by intestinal epithelial injury and increased intestinal permeability due to a variety of factors, including chronic stress, inflammatory bowel disease, diabetes, surgery, and chemotherapy, resulting in an increased influx of matter from the intestinal lumen causing constipation and bacteremia. To our knowledge, this is the first known case of LGS along with () bacteremia in a neurodegenerative disease patient. The patient was an 81-year-old male with a history of Alzheimer's disease, cerebral infarction, and diverticulitis in a psychiatric hospital, fed via a nasogastric tube.

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Introduction: The aim of this study is to examine the physiological effects of emodin on intestinal microorganisms and the liver in the BALb/c mice.

Method And Results: Following an 8-week administration of emodin at doses of 25, 50, and 100 mg/kg/day,pathological analyses revealed that emodin significantly reduced the colon length, induced colonic crypt inflammation,diminished the colonic mucus layer,and decreased the fluorescence intensity of colonic tight junction proteins ZO-1 and Occludin. Concurrently, 16S rDNA gene sequencing corroborated that emodin altered the diversity and composition of the intestinal microbiota by increasing the to ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!