Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729563 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2015.11.033 | DOI Listing |
Lab Anim Res
January 2025
Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, The 1st Veterinary R&D Building Rm 301, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
Background: Metabolic syndrome (MetS) refers to a group of risk factors that cause health problems, such as obesity, diabetes, dyslipidemia, and hyperglycemia. MetS is characterized by insulin resistance, which leads to abnormal insulin sensitivity. Cirsium japonicum var.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Endocrinology and Metabolism and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, 4301 W. Markham, #587, Little Rock, AR, 72205, USA.
Phosphatidylcholine is a ubiquitous phospholipid. It contains a phosphocholine (PC) headgroup and polyunsaturated fatty acids that, when oxidized, form reactive oxidized phospholipids (PC-OxPLs). PC-OxPLs are pathogenic in multiple diseases and neutralized by anti-PC IgM antibodies.
View Article and Find Full Text PDFDrug Res (Stuttg)
January 2025
Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
This study aims to explore the therapeutic potential of thymoquinone (TQ) in DR by assessing its effects on Müller cell apoptosis through modulation of the miR-29b/SP1 pathway in a diabetic animal model.Healthy C57BL/6 mice (25 g) were used in the study. Retinal samples were collected from both normal and diabetic mice subjected to various treatments: TQ (1 mg/kg/day), glibenclamide (GLB, 250 mg/kg/day), sitagliptin (STG, 10 mg/kg/day), and metformin (MET, 5 mg/kg/day) over a period of 28 days.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany.
Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.
View Article and Find Full Text PDFEur Thyroid J
January 2025
H Heuer, Department of Endocrinology, Diabetes and Metabolism, University of Duisburg-Essen, Essen, Germany.
Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!