AI Article Synopsis

Article Abstract

Aim: To assess cell death pathways in response to magnetic hyperthermia.

Materials & Methods: Human melanoma cells were loaded with citric acid-coated iron-oxide nanoparticles, and subjected to a time-varying magnetic field. Pathways were monitored in vitro in suspensions and in situ in monolayers using fluorophores to report on early-stage apoptosis and late-stage apoptosis and/or necrosis.

Results: Delayed-onset effects were observed, with a rate and extent proportional to the thermal-load-per-cell. At moderate loads, membranal internal-to-external lipid exchange preceded rupture and death by a few hours (the timeline varying cell-to-cell), without any measurable change in the local environment temperature.

Conclusion: Our observations support the proposition that intracellular heating may be a viable, controllable and nonaggressive in vivo treatment for human pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.15.185DOI Listing

Publication Analysis

Top Keywords

real-time tracking
4
tracking delayed-onset
4
delayed-onset cellular
4
cellular apoptosis
4
apoptosis induced
4
induced intracellular
4
intracellular magnetic
4
magnetic hyperthermia
4
hyperthermia aim
4
aim assess
4

Similar Publications

Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.

View Article and Find Full Text PDF

Background: Diet significantly impacts the onset and progression of inflammatory bowel disease (IBD), and diet offers unique opportunities for treatment and preventative purposes. However, despite growing interest, no diet has been conclusively associated with improved long-term clinical and endoscopic outcomes in IBD, and evidence-based dietary guidelines for IBD remain scarce. This narrative review critically examines dietary assessment methods tailored to the unique needs of IBD, highlighting opportunities for precision and inclusivity.

View Article and Find Full Text PDF

Accurate localization is crucial for numerous applications. While several methods exist for outdoor localization, typically relying on GPS signals, these approaches become unreliable in environments subject to a weak GPS signal or GPS outage. Many researchers have attempted to address this limitation, primarily focusing on real-time solutions.

View Article and Find Full Text PDF

A Dual-Channel and Frequency-Aware Approach for Lightweight Video Instance Segmentation.

Sensors (Basel)

January 2025

The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China.

Video instance segmentation, a key technology for intelligent sensing in visual perception, plays a key role in automated surveillance, robotics, and smart cities. These scenarios rely on real-time and efficient target-tracking capabilities for accurate perception and intelligent analysis of dynamic environments. However, traditional video instance segmentation methods face complex models, high computational overheads, and slow segmentation speeds in time-series feature extraction, especially in resource-constrained environments.

View Article and Find Full Text PDF

A Fuzzy Control Strategy for Multi-Goal Autonomous Robot Navigation.

Sensors (Basel)

January 2025

Department of Product & Systems Design Engineering, University of the Aegean, 84100 Syros, Greece.

This paper addresses the complex problem of multi-goal robot navigation, framed as an NP-hard traveling salesman problem (TSP), in environments with both static and dynamic obstacles. The proposed approach integrates a novel path planning algorithm based on the Bump-Surface concept to optimize the shortest collision-free path among static obstacles, while a Genetic Algorithm (GA) is employed to determine the optimal sequence of goal points. To manage static or dynamic obstacles, two fuzzy controllers are developed: one for real-time path tracking and another for dynamic obstacle avoidance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!