To exploit the benefits of nanostructuring for enhanced hydrogen evolution reaction (HER), we employed coaxial electrospinning to synthesize single-layered WS2 nanoplates anchored to hollow nitrogen-doped carbon nanofibers (WS2@HNCNFs) as efficient electrocatalysts. For comparison, bulk WS2 powder and single layers of WS2 embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) were synthesized and electrochemically tested. The distinctive design of the WS2@HNCNFs enables remarkable electrochemical performances showing a low overpotential with reduced charge transfer resistance, a small Tafel slope, and excellent durability. The experimental results highlight the importance of nanostructure engineering in electrocatalysts for enhanced HER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b09447 | DOI Listing |
Food Chem
January 2025
Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.
View Article and Find Full Text PDFChem Sci
January 2025
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China
The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023 China. Electronic address:
Electrochemical glycerol oxidation reaction (GOR) presents a promising approach for converting excess glycerol (GLY) into high-value-added products. However, the complex mechanism and the challenge of achieving selectivity for diverse products make GOR difficult to address in both experimental and theoretical studies. In this work, three nitrogen-doped graphene-supported copper single-atom catalysts (CuN@Gra SACs, x = 2-4) were selected as the model system due to their simple structure, excellent conductivity and high structural stability.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
Anion exchange membrane fuel cells (AEMFCs) are one of the ideal energy conversion devices. However, platinum (Pt), as the benchmark catalyst for the hydrogen oxidation reaction (HOR) of AEMFCs anodes, still faces issues of insufficient performance and susceptibility to CO poisoning. Here, we report the Joule heating-assisted synthesis of a small sized RuPt single-atom alloy catalyst loaded on nitrogen-doped carbon modified with single W atoms (s-RuPt@W/NC), in which the near-range single Ru atoms on the RuPt nanoparticles and the long-range single W atoms on the support simultaneously modulate the electronic structure of the active Pt-site, enhancing alkaline HOR performance of s-RuPt@W/NC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!