Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, in the forensic biometric community, there is a growing interest to compute a metric called "likelihood-ratio" when a pair of biometric specimens is compared using a biometric recognition system. Generally, a biometric recognition system outputs a score and therefore a likelihood-ratio computation method is used to convert the score to a likelihood-ratio. The likelihood-ratio is the probability of the score given the hypothesis of the prosecution, Hp (the two biometric specimens arose from a same source), divided by the probability of the score given the hypothesis of the defense, Hd (the two biometric specimens arose from different sources). Given a set of training scores under Hp and a set of training scores under Hd, several methods exist to convert a score to a likelihood-ratio. In this work, we focus on the issue of sampling variability in the training sets and carry out a detailed empirical study to quantify its effect on commonly proposed likelihood-ratio computation methods. We study the effect of the sampling variability varying: 1) the shapes of the probability density functions which model the distributions of scores in the two training sets; 2) the sizes of the training sets and 3) the score for which a likelihood-ratio is computed. For this purpose, we introduce a simulation framework which can be used to study several properties of a likelihood-ratio computation method and to quantify the effect of sampling variability in the likelihood-ratio computation. It is empirically shown that the sampling variability can be considerable, particularly when the training sets are small. Furthermore, a given method of likelihood-ratio computation can behave very differently for different shapes of the probability density functions of the scores in the training sets and different scores for which likelihood-ratios are computed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scijus.2015.05.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!