Introduction: Although muscle injury is a common source of pain, the mechanism causing such pain is not completely known. We have previously reported nerve growth factor (NGF) as a proinflammatory mediator involved in acute pain, and clinical trials have shown the effectiveness of anti-NGF antibodies for management of low back pain. Here, we aim to examine the effects of anti-NGF antibodies on muscle-derived pain by studying their effects on sensory innervation in a rat muscle injury model.

Methods: A nervous system tracer, Fluoro-Gold, was applied to both gastrocnemius muscles of 24 male Sprague Dawley rats to stain the sensory nerves. Then, the drop-mass method was used to damage the right gastrocnemius muscle of the posterior limb. Anti-NGF antibodies (50μL) were injected into the injured muscles in 12 rats. Tissues were evaluated 1, 3, and 7 days post-injury by performing haematoxylin-and-eosin (HE) staining. The percentage of the total number of FG-positive cells that were also positive for a pain-related neuropeptide, calcitonin gene-related peptide (CGRP), was determined for the bilateral dorsal root ganglia from L1 to L6 7 days post-injury.

Results: HE staining showed active inflammation, indicated by increased basophil and eosinophil accumulation, at the injury site 1 and 3 days post-injury, as well as scar tissue formation 7 days post-injury. Injection of anti-NGF reduced muscle necrosis 1 and 3 days post-injury, and resulted in replacement of granulation tissue and muscle fibre regeneration 7 days post-injury. Anti-NGF also significantly inhibited CGRP among FG-positive cells (treatment group 38.2%, control group 49.6%; P<0.05).

Discussion: This study found active inflammation induced by NGF, which may contribute to pain after muscle injury. Anti-NGF antibodies successfully suppressed the pain mediator NGF and inhibited inflammation, suggesting NGF as a target for control in pain management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.injury.2015.11.026DOI Listing

Publication Analysis

Top Keywords

days post-injury
20
muscle injury
12
anti-ngf antibodies
12
nerve growth
8
growth factor
8
fg-positive cells
8
muscle
6
days
6
pain
5
anti-ngf
5

Similar Publications

Lost Work Due to Burn-Related Disability in a US Working Population.

Eur Burn J

December 2024

Department of Surgery, University of Michigan, 2101 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.

Background: Burn injuries can require hospitalization, operations, and long-term reconstruction. Burn-injured patients can experience short- or long-term disability. We investigated lost workdays (LWDs), short-term disability (STD), and long-term disability (LTD) in the 12-month period following a burn injury.

View Article and Find Full Text PDF

Background: 95% of men with spinal cord injuries exhibit difficulties with sexual function, including erectile dysfunction, anejaculation, retrograde ejaculation, poor ejaculatory force, and poor sperm quality.

Aim: The primary goal is to determine if well-established interventions, such as spinal cord epidural stimulation, are a feasible treatment for sexual dysfunction and if locomotor recovery training can be used to improve ejaculatory function in a rodent model of spinal cord injury (SCI).

Methods: Male Wistar rats underwent thoracic laminectomies (shams), spinal cord transections, or moderate spinal cord contusion injuries.

View Article and Find Full Text PDF

Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.

View Article and Find Full Text PDF

Repetitive cortical spreading depolarizations are prolonged early after experimental traumatic brain injury.

Exp Neurol

December 2024

Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA. Electronic address:

Cortical spreading depolarizations (CSDs) are the most common electrophysiological dysfunction following a traumatic brain injury (TBI), and clustered CSDs (≥3 CSDs in 2 h) are associated with poor outcomes 6 months after TBI. While many experimental studies have investigated a single CSD after injury, no known studies have investigated how time after injury affects the characteristics and impact of a CSD cluster. This study sought to determine the characteristics of a cluster of repetitive CSDs when induced at three different time points after moderate experimental TBI.

View Article and Find Full Text PDF

Knee osteoarthritis contributes substantially to worldwide disability. Post-traumatic osteoarthritis (PTOA) develops secondary to joint injury, such as ligament rupture, and there is increasing evidence suggesting a key role for inflammation in the aetiology of PTOA and associated functional deficits. Colony stimulating factor 1 receptor (CSF1-R) has been implicated in the pathogenesis of musculoskeletal degeneration following anterior cruciate ligament (ACL) injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!