Introduction: Communicable disease management (CDM) is an important component of disaster public health response operations. However, there is a lack of any performance assessment (PA) framework and related indicators for the PA. This study aimed to develop a PA framework and indicators in CDM in disasters.
Methods: In this study, a series of methods were used. First, a systematic literature review (SLR) was performed in order to extract the existing PA frameworks and indicators. Then, using a qualitative approach, some interviews with purposively selected experts were conducted and used in developing the PA framework and indicators. Finally, the analytical hierarchy process (AHP) was used for weighting of the developed indicators.
Results: The input, process, products, and outcomes (IPPO) framework was found to be an appropriate framework for CDM PA. Seven main functions were revealed to CDM during disasters. Forty PA indicators were developed for the four categories.
Conclusion: There is a lack of any existing PA framework in CDM in disasters. Thus, in this study, a PA framework (IPPO framework) was developed for the PA of CDM in disasters through a series of methods. It can be an appropriate framework and its indicators could measure the performance of CDM in disasters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1049023X15005452 | DOI Listing |
Sci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFSci Rep
December 2024
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122, China.
The unknown boundary issue, between superior computational capability of deep neural networks (DNNs) and human cognitive ability, has becoming crucial and foundational theoretical problem in AI evolution. Undoubtedly, DNN-empowered AI capability is increasingly surpassing human intelligence in handling general intelligent tasks. However, the absence of DNN's interpretability and recurrent erratic behavior remain incontrovertible facts.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China.
The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi-class classification.
View Article and Find Full Text PDFFront Public Health
December 2024
School of Public Health, Shandong Second Medical University, Weifang, China.
Background: Improving system coordination is a pivotal strategy and a critical pathway for social governance. Chinese society is currently facing a significant challenge in aligning the allocation of health resources with economic development. Evaluating the level of coordinated development within the system can provide valuable insights to support the construction of a more coordinated China and foster high-quality development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!