In recent years, great effort has been devoted to the development of biomaterials that come into contact with blood. The surfaces of these materials need to be of suitable mechanical strength, and present anti-thrombogenic and anti-calcification properties. Chitosan is a natural polymer that has attracted attention due to its potential to act as a biomaterial. However, chitosan contains amino groups in its structure that may promote thrombogenesis and calcification. A strategy to reduce these properties constitutes the introduction of sulfonate groups (R-SO3-) in the chitosan chain. Another interesting biopolymer with similar characteristics to those of heparin is carrageenan, which has sulfate groups in its structure. As such, we evaluated “in vitro” calcification and thrombogenic processes on surfaces of pristine and sulfonated chitosan and on polyelectrolyte complexes (PEC) of chitosan and carrageenan. Results indicate that PEC demonstrate significant reductions in calcification and thrombogenic potential, probably due to the presence of sulfonate groups in both the carrageenan and treated chitosan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2015.10.020 | DOI Listing |
Mar Drugs
January 2025
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy.
In recent years, the invasive Atlantic blue crab () has increased its spread throughout the Mediterranean Sea, threatening native biodiversity and local economies. This study aimed to valorize sampled in Sicily by utilizing its exoskeleton as a source of chitosan, astaxanthin, and bio-phenolic compounds. These biomolecules were evaluated for their reducing, radical scavenging, and antitumor activity.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Chemistry, Faculty of Science (boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
This study aims to enhance the antimicrobial properties of chitosan through preparing novel chitosan Schiff bases via coupling with 4-formylphenyl 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-sulfonate (B5) where, different molar ratios of B5 were used to prepare various Schiff bases with chitosan, resulting in Schiff bases coded as d5, d6, d7, and d8, respectively. The modified chitosan samples (d5, d6, d7, and d8) showed reduced crystallinity and improved thermal stability. The crystallinity index of unmodified chitosan was 64 %, which decreased to 59, 55.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
Urinary catheters serve as critical medical devices in clinical practice. However, the currently used urinary catheters lack efficient antibacterial and lubricating properties, often leading to discomfort with patients and even severe urinary infections. Herein, a new strategy of supramolecular assembly and disassembly of chitosan (Cs) is developed that enables efficient antibacterial lubricous and biodegradable hydrogel urinary catheters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!