A novel nickel oxide nanoparticle-deposited silica (SiO2@NiO) composite was prepared via liquid-phase deposition (LPD) and then employed as a solid-phase extraction (SPE) sorbent. When the SPE was coupled with liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS) analysis, an analytical platform for the sensitive determination of benzimidazole residues in egg and milk was established. The limits of detection of nine benzimidazoles were in the range of 0.8-2.2 ng/mL in milk and 0.3-2.1 ng/g in eggs, respectively, which was 5-10 times superior to the methods with other adsorbents for SPE. The recoveries of nine benzimidazoles spiked in milk and egg ranged from 70.8 to 118.7%, with relative standard deviations (RSDs) being less than 18.9%. This work presented the excellent extraction performance of NiO on benzimidazoles for the first time, and the applicability of the LPD technique used as sorbents for trace analysis in complex matrices was also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.5b04672 | DOI Listing |
Adv Mater
December 2024
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Single-crystal high-nickel oxide with an integral structure can prevent intergranular cracks and the associated detrimental reactions. Yet, its low surface-to-volume ratio makes surficial degradation a more critical factor in electrochemical performance. Herein, artificial proton-rich (ammonium bicarbonate) shell is successfully introduced on the nickel-rich LiNiCoMnO single crystals for in situ electrochemically conversing into inorganic maskant to enhance stability of cathode.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, Delhi, 110016, INDIA.
We have grown (111)- and (001)-oriented NiO thin films on (0001)-Sapphire and (001)-MgO substrates using pulsed laser deposition (PLD), respectively. DC magnetic susceptibility measurements underline that the Néel temperatures of the samples are beyond room-temperature. This is further confirmed by the presence of two-magnon Raman scattering modes in these films in ambient conditions.
View Article and Find Full Text PDFNickel oxide (NiO) is known for its remarkable theoretical specific capacity, making it a highly appealing option for electrode materials in electrochemical energy storage applications. Nevertheless, its practical use is limited by poor electrochemical performance and complicated electrode fabrication processes. To address these issues, we propose a new anode design comprising an intermediate NiO nanoarray layer and a carbon coating layer grown directly on a three-dimensional (3D) conductive nickel foam substrate, designated as C@NiO@Ni foam.
View Article and Find Full Text PDFRSC Adv
December 2024
School of Materials Science and Engineering, Gwangju Institute of Science and Technology 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
Photoelectrochemical water splitting is a promising technology for converting solar energy into chemical energy. For this system to be practically viable, the materials and processes employed for photoelectrode fabrication should be cost-effective and scalable. Herein, we report the large-scale fabrication of nickel oxide-coated n-type silicon (n-Si) photoanodes chemical bath deposition for efficient photoelectrochemical water oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!