The two isoforms of human heme oxygenase (HO1 and HO2) catalyze oxidative degradation of heme to biliverdin, Fe, and CO. Unlike HO1, HO2 contains two C-terminal heme regulatory motifs (HRMs) centered at Cys265 and Cys282 that act as redox switches and, in their reduced dithiolate state, bind heme (Fleischhacker et al., Biochemistry , 2015 , 54 , 2693 - 2708 ). Here, we describe cryoreduction/annealing and electron paramagnetic resonance spectroscopic experiments to study the structural features of the oxyheme moiety in HO2 and to elucidate the initial steps in heme degradation. We conclude that the same mechanism of heme hydroxylation to α-meso-hydroxyheme is employed by both isoforms and that the HRMs do not affect the physicochemical properties of the oxy-Fe(II) and HOO-Fe(III) states of HO2. However, the absorption spectrum of oxy-Fe(II)-HO2 is slightly blue-shifted relative to that of HO1. Furthermore, heme hydroxylation proceeds three times more slowly, and the oxy-Fe(II) state is 100-fold less stable in HO2 than in HO1. These distinctions are attributed to slight structural variances in the two proteins, including differences in equilibrium between open versus closed conformations. Kinetic studies revealed that heme oxygenation by HO2 occurs solely at the catalytic core in that a variant of HO2 lacking the C-terminal HRM domain exhibits the same specific activity as one containing both the catalytic core and HRM domain; furthermore, a truncated variant containing only the HRM region binds but cannot oxidize heme. In summary, HO1 and HO2 share similar catalytic mechanisms, and the HRMs do not play a direct role in the HO2 catalytic cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745887 | PMC |
http://dx.doi.org/10.1021/acs.biochem.5b00943 | DOI Listing |
bioRxiv
December 2024
Department of Chemistry, Princeton University, Princeton, NJ, USA.
Cytochrome P450s (CYPs) are a superfamily of thiolate-ligated heme metalloenzymes principally responsible for the hydroxylation of unactivated C-H bonds. The lower-axial cysteine is an obligatory and universally conserved residue for the CYP enzyme class. Herein, we challenge this paradigm by systematically identifying non-canonical CYPs (ncCYPs) that do not harbor a cysteine ligand.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, NO.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China.
4',5,6,7-tetrahydoxyisoflavone (6-hydroxygenistein, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, but whether 6-OHG can protect hypoxia-induced damage is unclear. The objective of current study was to evaluate the protective effect and underling mechanism of 6-OHG against hypoxia-induced injury via network pharmacology and cellular experiments. 6-OHG-related and hypoxia injury-related targets were screened by public databases.
View Article and Find Full Text PDFBiochemistry
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.
The ethylene-forming enzyme (EFE) is a Fe(II)/2-oxoglutarate (2OG) and l-arginine (l-Arg)-dependent oxygenase that primarily decomposes 2OG into ethylene while also catalyzing l-Arg hydroxylation. While the hydroxylation mechanism in EFE is similar to other Fe(II)/2OG-dependent oxygenases, the formation of ethylene is unique. Various redesign strategies have aimed to increase ethylene production in EFE, but success has been limited, highlighting the need for alternate approaches.
View Article and Find Full Text PDFChembiochem
December 2024
Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia.
The heme enzymes of the cytochrome P450 superfamily (CYPs) catalyse the selective hydroxylation of unactivated C-H bonds in organic molecules. There is great interest in applying these enzymes as biocatalysts with a focus on self-sufficient CYP 'fusion' enzymes, comprising a single polypeptide chain with the electron transfer components joined to the heme domain. Here we elucidate the function of the self-sufficient CYP116B46 fusion enzyme, from the thermophilic bacterium Tepidiphilus thermophilus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!