Modeling missing data in knowledge space theory.

Psychol Methods

Department of Philosophy, Sociology, Pedagogy, and Applied Psychology (FISPPA), University of Padua.

Published: December 2015

Missing data are a well known issue in statistical inference, because some responses may be missing, even when data are collected carefully. The problem that arises in these cases is how to deal with missing data. In this article, the missingness is analyzed in knowledge space theory, and in particular when the basic local independence model (BLIM) is applied to the data. Two extensions of the BLIM to missing data are proposed: The former, called ignorable missing BLIM (IMBLIM), assumes that missing data are missing completely at random; the latter, called missing BLIM (MissBLIM), introduces specific dependencies of the missing data on the knowledge states, thus assuming that the missing data are missing not at random. The IMBLIM and the MissBLIM modeled the missingness in a satisfactory way, in both a simulation study and an empirical application, depending on the process that generates the missingness: If the missing data-generating process is of type missing completely at random, then either IMBLIM or MissBLIM provide adequate fit to the data. However, if the pattern of missingness is functionally dependent upon unobservable features of the data (e.g., missing answers are more likely to be wrong), then only a correctly specified model of the missingness distribution provides an adequate fit to the data.

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000050DOI Listing

Publication Analysis

Top Keywords

missing data
32
missing
14
data
12
data missing
12
data knowledge
8
knowledge space
8
space theory
8
missing blim
8
missing completely
8
completely random
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!