The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.92.053022 | DOI Listing |
Langmuir
November 2024
UKM─Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Malaysia.
This work explores bubble laser technology as an alternative to needles in injection systems for vaccination, cancer treatment, insulin delivery, and catheter hygiene. The technology leverages laser-induced microfiltration and bubble dynamics to create high-speed pneumatic jets that penetrate the skin without needles, addressing discomfort, infection risk, and needle-related concerns. The system's performance is analyzed based on laser wavelength, pulse duration, and Gaussian beam droplet size.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771.
Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δC) and oxygen (δO) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater.
View Article and Find Full Text PDFACS Omega
August 2024
Lab of Mechanical Structure & Biomechanics, Anhui Agricultural University, Hefei 230036, China.
As the core of a hypersonic propulsion system, the effective mixing efficiency of fuel and air in a supersonic combustor is crucial for its performance. This study focuses on a cold supersonic flow and employs computational fluid dynamics (CFD) techniques combined with Euler-Lagrange method's discrete-phase model (DPM) for multiphase flows, K-H and R-T (Kelvin-Helmholtz and Rayleigh-Taylor) mixing and atomization models, turbulence models, and surface evaporation models to investigate the injection, atomization, and mixing characteristics of kerosene in supersonic airflow. In order to enhance the mixing efficiency between kerosene and air while reducing flow losses, this study examines a staggered dual-jet injection scheme, with the dual jets arranged at the center of the cavity and having a dual-jet spacing of 10 and 20 mm, respectively.
View Article and Find Full Text PDFThe work introduces a VIPA-based interferometric Rayleigh scattering instrument for tracer-free, simultaneous temperature and velocity measurements along a 1D volume. A virtually imaged phased array (VIPA) replaces the Fabry-Perot etalon conventionally used in interferometric Rayleigh scattering, allowing the extension of the technique from 0D (point or multi-point) to 1D. The Rayleigh-Brillouin spectrum is a function of pressure and temperature and can be used for temperature diagnostics in isobaric flows.
View Article and Find Full Text PDFACS Omega
February 2024
IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, Rennes 35042, France.
We study foam production and destabilization through a flow-focusing geometry, namely a single pore of rectangular cross-section, by coinjecting gas and liquid at constant pressure, , and constant flow rate, . We observe that bubble production results from a Rayleigh-Plateau destabilization of the internal gas thread that occurs at the pore neck when its width becomes comparable to the height of the rectangular-section channel. Using a simple model and numerical approach, we (i) predict the shape of the gas jet and its stability range as a function of flow parameters and device geometry, which we successfully compare with our experimental results, and (ii) demonstrate the existence of a critical local pressure drop at the pore neck that determines whether or not a stable gas flow can form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!