Reliability of a field-based drop vertical jump screening test for ACL injury risk assessment.

Phys Sportsmed

a Center for Shoulder, Elbow and Sports Medicine, Department of Orthopaedic Surgery , Columbia University Medical Center, New York , NY 10032 , USA.

Published: September 2016

Objectives: There is an epidemic of anterior cruciate ligament (ACL) injuries in youth athletes. Poor neuromuscular control is an easily modifiable risk factor for ACL injury, and can be screened for by observing dynamic knee valgus on landing in a drop vertical jump test. This study aims to validate a simple, clinically useful population-based screening test to identify at-risk athletes prior to participation in organized sports. We hypothesized that both physicians and allied health professionals would be accurate in subjectively assessing injury risk in real-time field and office conditions without motion analysis data and would be in agreement with each other.

Methods: We evaluated the inter-rater reliability of risk assessment by various observer groups, including physicians and allied health professionals, commonly involved in the care of youth athletes. Fifteen athletes age 11-17 were filmed performing a drop vertical jump test. These videos were viewed by 242 observers including orthopaedic surgeons, orthopaedic residents/fellows, coaches, athletic trainers (ATCs), and physical therapists (PTs), with the observer asked to subjectively estimate the risk level of each jumper. Objective injury risk was calculated using normalized knee separation distance (measured using Dartfish, Alpharetta, GA), based on previously published studies. Risk assessments by observers were compared to each other to determine inter-rater reliability, and to the objectively calculated risk level to determine sensitivity and specificity. Seventy one observers repeated the test at a minimum of 6 weeks later to determine intra-rater reliability.

Results: Between groups, the inter-rater reliability was high, κ = 0.92 (95% CI 0.829-0.969, p < 0.05), indicating that no single group gave better (or worse) assessments, including comparisons between physicians and allied health professionals. With a screening cutoff isolated to subjects identified by observers as "high risk", the sensitivity was 63.06% and specificity 82.81%. Reducing the screening cutoff to also include jumpers identified as "medium risk" increased sensitivity to 95.04% and decreased the specificity to 46.07%. Intra-rater reliability was moderate, κ = 0.55 (95% CI 0.49-0.61, p < 0.05), indicating that individual observers made reproducible risk assessments.

Conclusions: This study supports the use of a simple, field-based observational drop vertical jump screening test to identify athletes at risk for ACL injury. Our study shows good inter- and intra-rater reliability and high sensitivity and suggests that screening can be performed without significant training by physicians as well as allied health professionals, including: coaches, athletic trainers and physical therapists. Identification of these high-risk athletes may play a role in enrollment in appropriate preventative neuromuscular training programs, which have been shown to decrease the incidence of ACL injuries in this population.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00913847.2016.1131107DOI Listing

Publication Analysis

Top Keywords

drop vertical
12
vertical jump
12
injury risk
12
inter-rater reliability
12
screening test
8
acl injury
8
risk
8
risk assessment
8
youth athletes
8
jump test
8

Similar Publications

Purpose: To compare the biomechanics of a drop vertical jump (DVJ) landing task and functional outcomes among patients with anterior cruciate ligament reconstruction (ACLR) with quadriceps tendon (QT) and patellar tendon (PT) autografts.

Methods: Physically active patients who underwent primary ACLR with either a QT or PT autograft were included in this study. All were within 6 months to 2 years after surgery and cleared for return to physical activity.

View Article and Find Full Text PDF

Adding secondary cognitive tasks to drop vertical jumps alters the landing mechanics of athletes with anterior cruciate ligament reconstruction.

J Biomech

January 2025

Department of Community Medicine and Rehabilitation, Unit of Physiotherapy, Umeå University, Umeå, Sweden. Electronic address:

Anterior cruciate ligament (ACL) reinjury rates among athletes remain very high despite screening protocols designed to assess readiness for return to sport. To better identify biomechanical risk factors for ACL injury, combining neurocognitive challenges and high-impact tasks would more closely resemble sporting demands. We investigated the influence of secondary cognitive tasks on landing mechanics during bilateral drop vertical jumps (DVJs) among athletes following ACL reconstruction and whether sex affected these results.

View Article and Find Full Text PDF

Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot.

View Article and Find Full Text PDF

In a slim-floor structural system, beams and slabs are placed at the same level, reducing the overall floor height and material usage in vertical structures, thereby improving economic efficiency. The use of slim-floor structures is common practice in Finnish construction where these structures are typically constructed using hollow-concrete slabs and welded steel box beams. However, in Finland, only a few buildings utilise cross-laminated timber (CLT) slabs in slim-floor structures, and none have incorporated the composite action between CLT and steel beams.

View Article and Find Full Text PDF

Background: Drop height has previously been used as an effective programming parameter in plyometric jump training. Less is known about the usage of maximal rebound jump height from a distinct drop height as a parameter for individualized plyometric jump training. Hence, the aim of this study was to contrast the effects of two different drop jump (DJ) training modalities using either the individualized maximal rebound height (MRHT) or a standard (SDHT) drop height on selected measures of physical fitness in young volleyball players.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!