Background: Measuring responses to a more unstable walking environment at the point-of-care may reveal clinically relevant strategies, particularly for rehabilitation. This study determined if temporal measures, center of pressure-derived measures, and force impulse measures can quantify responses to surface instability and correlate with clinical balance and mobility measures.
Methods: Thirty-one unilateral amputees, 11 transfemoral and 20 transtibial, walked on level and soft ground while wearing pressure-sensing insoles. Foot-strike and foot-off center of pressure, center of pressure path, temporal, and force impulse variables were derived from F-Scan pressure-sensing insoles.
Findings: Significant differences (P<0.05) between level and soft ground were found for temporal and center of pressure path measures. Twenty regression models (R(2) ≤ 0.840), which related plantar-pressure-derived measures with clinical scores, consisted of nine variables. Stride time was in eight models; posterior deviations per stride in six models; mean CoP path velocity in five models; and anterior-posterior center of pressure path coefficient of variation, percent double-support time, and percent stance in four models.
Interpretation: Center of pressure-derived parameters, particularly temporal and center of pressure path measures, can differentiate between level and soft ground walking for transfemoral and transtibial amputees. Center of pressure-derived parameters correlated with clinical measures of mobility and balance, explaining up to 84.0% of the variability. The number of posterior deviations per stride, mean CoP path velocity stride time, anterior-posterior center of pressure path coefficient of variation, percent double-support time, and percent stance were frequently related to clinical balance and mobility measures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2015.11.004 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran All., Shahnazari St., Madar Sq., Mirdamad Blvd., Tehran, Iran.
Introduction: Groin pain is a common issue among athletes. Adductor-related pain is known as the most common cause of groin pain. Although, non-operative treatments have limited efficacy, Capacitive and Resistive Energy Transfer (TECAR), can be used in the treatment of musculoskeletal conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea.
Poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB) is a widely used hole transport material (HTM) in quantum dot light-emitting diodes (QLEDs). However, TFB-based solution-processed QLEDs face several challenges, including interlayer erosion, low hole mobility, shallow energy level of the highest occupied molecular orbital, and current leakage, which compromise the device efficiency and stability. To overcome these challenges, bromine and azide-based photothermally cross-linkable TFB derivatives, i.
View Article and Find Full Text PDFRev Neurol
December 2024
Well-Move Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain.
Objective: This study aimed to systematically review the available evidence on the effects of boxing interventions on people with Parkinson disease.
Methods: Four electronic databases were searched systematically from their inception until December 2023. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database and Methodological Index for Non-Randomized Studies scales.
Nanomicro Lett
January 2025
Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
Objective: To assess the stability of odontoid parameters on flexion-extension motion and to validate the accuracy of the physiological cervical lordosis (CL) predictive formula across different cervical positions.
Methods: Standard cervical spine lateral radiographs in neutral, flexion, and extension positions were collected to measure odontoid incidence (OI), odontoid tilt (OT), C2 slope (C2S), CL, T1 slope (T1S), and T1S minus CL (T1S-CL). Friedman's test was used to assess the differences in parameters among the three cervical spine positions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!