Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles.

ACS Appl Mater Interfaces

Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.

Published: January 2016

Lanthanide-doped upconversion nanoparticles have received growing attention in the development of low-background, highly sensitive and selective sensors. Here, we report a water probe based on ligand-free NaYF4:Yb/Er nanoparticles, utilizing their intrinsically nonlinear upconversion process. The water molecule sensing was realized by monitoring the upconversion emission quenching, which is mainly attributed to efficient energy transfer between upconversion nanoparticles and water molecules as well as water-absorption-induced excitation energy attenuation. The nonlinear upconversion process, together with power function relationship between upconversion emission intensity and excitation power density, offers a sensitive detection of water content down to 0.008 vol % (80 ppm) in an organic solvent. As an added benefit, we show that noncontact detection of water can be achieved just by using water attenuation effect. Moreover, these upconversion nanoparticle based recyclable probes should be particularly suitable for real-time and long-term water monitoring, due to their superior chemical and physical stability. These results could provide insights into the design of upconversion nanoparticle based sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b10192DOI Listing

Publication Analysis

Top Keywords

upconversion
9
upconversion nanoparticles
8
nonlinear upconversion
8
upconversion process
8
upconversion emission
8
detection water
8
upconversion nanoparticle
8
nanoparticle based
8
water
7
sensitive water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!