The objective of this study is to develop a new family of biodegradable and biologically active copolymers and their subsequent self-assembled cationic nanoparticles as better delivery vehicles for anticancer drugs to achieve the synergism between the cytotoxicity effects of the loaded drugs and the macrophage inflammatory response of the delivery vehicle. This family of cationic nanoparticles was formulated from a new family of amphiphilic cationic Arginine-Leucine (Arg-Leu)-based poly(ester urea urethane) (Arg-Leu PEUU) synthesized from four building blocks (amino acids, diols, glycerol α-monoallyl ether, and 1,6 hexamethylene diisocyanate). The chemical, physical, and biological properties of Arg-Leu PEUU biomaterials can be tuned by controlling the feed ratio of the four building blocks. The Arg-Leu PEUU copolymers have weight-average molecular weights from 13.4 to 16.8 kDa and glass-transition temperatures from -3.4 to -4.6 °C. The self-assembled cationic nanoparticles (Arg-Leu PEUU NPs) were prepared using a facile dialysis method. Arg-Leu PEUU NPs have average diameters ranging from 187 to 272 nm, show good biocompatibility with 3T3 fibroblasts, and they support bovine aortic endothelial cell (BAEC) proliferation and adhesion. Arg-Leu PEUU NPs also enhanced the macrophages' production of tumor necrosis factor-α (TNF-α) and nitric oxide (NO), but produced relatively low levels of interleukin-10 (IL-10), and therefore, the antitumor activity of macrophages might be enhanced. Arg-Leu PEUU NPs were taken up by HeLa cells after 4 h of incubation. The in vitro hemolysis assay showed the cationic Arg-Leu PEUU NPs increased their chance of endosomal escape at a more acidic pH. Doxorubicin (DOX) was successfully incorporated into the Arg-Leu PEUU NPs, and the DOX-loaded Arg-Leu PEUU NPs exhibited a pH-dependent drug release profile with accelerated release kinetics in a mild acidic condition. The DOX-loaded 6-Arg-4-Leu-4 A/L-2/1 NPs showed higher HeLa cell toxicity than the free DOX at the same concentration after 24 h of treatment. The results suggest the cationic Arg-Leu PEUU NPs could potentially be a useful carrier family for hydrophobic anticancer drugs and produce a synergistic effect between DOX cytotoxicity and the production of TNF-α and NO by macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.5b01449DOI Listing

Publication Analysis

Top Keywords

arg-leu peuu
44
peuu nps
32
self-assembled cationic
12
cationic nanoparticles
12
arg-leu
11
peuu
11
nps
9
polyester urea
8
delivery vehicle
8
anticancer drugs
8

Similar Publications

Arginine-leucine based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy in cardiovascular stent applications.

Colloids Surf B Biointerfaces

November 2017

Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Shenzhen Research Institute, Peking University, Shenzhen 518055, China. Electronic address:

Selected from the family of self-designed biodegradable amino acid-based poly (ester urea urethane) (AA-PEUU) pseudo-protein biomaterials, arginine-leucine based poly (ester urea urethane)s (Arg-Leu-PEUUs) were used as protective and bio-functional coatings for bio-absorbable magnesium alloy MgZnYNd in cardiovascular stent applications. Comparing with poly (glycolide-co-lactide) (PLGA) coating, the Arg-Leu-PEUU coating had stronger bonding strength with the substrate; in vitro electrochemical and long-term immersion results verified a significantly better corrosion resistance. Acute blood contact tests proved a better hemocompatibility of Arg-Leu-PEUU coating.

View Article and Find Full Text PDF

The objective of this study is to develop a new family of biodegradable and biologically active copolymers and their subsequent self-assembled cationic nanoparticles as better delivery vehicles for anticancer drugs to achieve the synergism between the cytotoxicity effects of the loaded drugs and the macrophage inflammatory response of the delivery vehicle. This family of cationic nanoparticles was formulated from a new family of amphiphilic cationic Arginine-Leucine (Arg-Leu)-based poly(ester urea urethane) (Arg-Leu PEUU) synthesized from four building blocks (amino acids, diols, glycerol α-monoallyl ether, and 1,6 hexamethylene diisocyanate). The chemical, physical, and biological properties of Arg-Leu PEUU biomaterials can be tuned by controlling the feed ratio of the four building blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!