6-Hydroxydopamine (6-OHDA) is a neurotoxin frequently used to create in vitro and in vivo experimental models of Parkinson's disease (PD), a chronic neurodegenerative disorder largely resulting from damage to the nigrostriatal dopaminergic pathway. No effective drugs or therapies have been developed for this devastating disorder, and current regimens of symptomatic therapeutics only alleviate symptoms temporarily. Therefore, effective treatments that reverse or cure this disorder are urgently needed. The aim of the study described in this report was to investigate the therapeutic impact of B355252, an aryl thiophene sulfonamide chemical entity, in the widely recognized in vitro model of PD, and to characterize the molecular signaling pathways. We show here that 6-OHDA-induced cell death in HT22, a murine neuronal cell model, through a pathway that involves the mitochondria by increasing the levels of reactive oxygen species (ROS), raising intracellular calcium ([Ca(2+)]i), enhancing the release of cytochrome c to the cytosol, and promoting activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling pathway. More importantly, we found that B355252 protected HT22 neurons against 6-OHDA toxin-induced neuronal cell death by significant attenuation of ROS production, blocking of mitochondrial depolarization, inhibition of cytochrome c release, sequestration of [Ca(2+)]i, modulation of JNK cascade, and strong inhibition of caspase 3/7 cleavage. Overall, this study demonstrates that death of neurons under toxic conditions characteristic of PD can be efficiently halted by B355252 and suggests that further development of the molecule could be potentially beneficial as a therapeutic prevention or treatment option for PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-015-0304-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!