The interactions of two oil droplets grown in the presence of swollen, lightly cross-linked cationic poly(tert-butylamino)ethyl methacrylate (PTBAEMA) microgels was monitored using a high-speed video camera. Three oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. Adsorption of the swollen microgel particles was confirmed by interfacial tension, interfacial elasticity and dilational viscosity measurements on single pendant oil droplets, and assessment of the oscillatory dynamics for coalescing droplet pairs. Like the analogous bulk emulsions, particle adsorption alone did not prevent coalescence of pairs of giant Pickering emulsion droplets. However, prior addition of surface-active PPG-TDI cross-linker to the oil phase results in the formation of highly stable microgel colloidosomes via reaction with the secondary amine groups on the PTBAEMA chains. Colloidosome stability depended on the age of the oil-water interface. This reflects a balance between the adsorption kinetics of the PPG-TDI cross-linker and the microgel particles, each of which must be present at the interface to form a stable colloidosome. Colloidosome formation was virtually instantaneous in n-dodecane, but took up to 120 s in the case of isopropyl myristate. The impact of an acid-induced latex-to-microgel transition on the interaction of giant colloidosomes (originally prepared at pH 10 using isopropyl myristate) was also studied. This acid challenge did not result in coalescence, which is consistent with a closely-related study (A. J. Morse et al., Langmuir, 2014, 30(42), 12509-12519). No evidence was observed for inter-colloidosome cross-linking, which was attributed to retention of an aqueous film between the adjacent pair of colloidosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5sm02450aDOI Listing

Publication Analysis

Top Keywords

isopropyl myristate
12
microgel colloidosomes
8
oil droplets
8
microgel particles
8
ppg-tdi cross-linker
8
giant ph-responsive
4
microgel
4
ph-responsive microgel
4
colloidosomes
4
colloidosomes preparation
4

Similar Publications

Chemical Diversity of Mediterranean Seagrasses Volatilome.

Metabolites

December 2024

CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.

Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.

View Article and Find Full Text PDF

Adhesiveness of dermal patches can be modified in the presence of active substances. The effect is more complex when liquid components are also present in the matrix. Commercial grade pressure sensitive adhesive (PSA) polyacrylates (three types) and silicones (two types) were used to prepare adhesive matrices and liquid additives were propylene glycol, polyoxyethylene glycol, isopropyl myristate, triacetin, triethyl citrate or low viscosity silicone oil.

View Article and Find Full Text PDF

Exploration of In Situ Extraction for Enhanced Triterpenoid Production by Saccharomyces cerevisiae.

Microb Biotechnol

December 2024

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, Australia.

Plant-derived triterpenoids are in high demand due to their valuable applications in cosmetic, nutraceutical, and pharmaceutical industries. To meet this demand, microbial production of triterpenoids is being developed for large-scale production. However, a prominent limitation of microbial synthesis is the intracellular accumulation, requiring cell disruption during downstream processing.

View Article and Find Full Text PDF

Transdermal Insulin Delivery Using Ionic Liquid-Mediated Nanovesicles for Diabetes Treatment.

ACS Biomater Sci Eng

December 2024

Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Transdermal insulin delivery is a promising method for diabetes management, providing the potential for controlled, sustained release and prolonged insulin effectiveness. However, the large molecular weight of insulin hinders its passive absorption through the stratum corneum (SC) of the skin, and high doses of insulin are required, which limits the commercial viability. We developed ethosome (ET) and -ethosome (TET) nanovesicle formulations containing a biocompatible lipid-based ionic liquid, [EDMPC][Lin], dissolved in 35% ethanol.

View Article and Find Full Text PDF

This study aims to develop a sustained release patch for bisoprolol (BSP) to address the issue of blood pressure fluctuations caused by traditional dosing methods, ensuring continuous drug release and efficient utilization. Long-chain saturated fatty acids (C-C) were chosen as counterions to precisely control BSP's permeation rate in the patch formulation, and the ion-pairing strategy's mechanism in drug delivery was thoroughly investigated. Molecular docking results revealed significant differences in the adsorption capacities of different ion pairs in the stratum corneum (SC) and epidermis, directly influencing their residence times and thereby regulating BSP's passive diffusion rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!