Objective: Independent previous studies in both rodents and humans suggest a role of developmental genes in the origin of obesity and body fat distribution. Here, the hypothesis that human adipose tissue (AT) expression of the developmental genes homeobox transcription factors C9 (HOXC9) and C10 (HOXC10) is fat depot-specific and related to obesity-related traits was tested.

Methods: In 636 individuals, HOXC9 and HOXC10 mRNA expression was investigated in paired abdominal subcutaneous (SC) and omental AT samples in relation to a wide range of age, BMI, fat distribution, and metabolic parameters and in subfractions of isolated adipocytes and cells of the stromal vascular fraction (SVF).

Results: HOXC9 and HOXC10 mRNA expression is significantly higher in SC compared to omental AT. HOXC9 and HOXC10 mRNA expression significantly correlates with body fat mass, even after adjustment for age and gender. In smaller subgroups (depending on the availability of data), fat depot-related significant gender- and BMI-independent associations between HOXC9 and HOXC10 gene expression and parameters of glucose metabolism and AT biology were found (e.g., adipocyte size).

Conclusions: Taken together, these data suggest that HOXC9 and HOXC10 may play an important role in the development of obesity, adverse fat distribution, and subsequent alterations in whole-body metabolism and AT function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/oby.21317DOI Listing

Publication Analysis

Top Keywords

hoxc9 hoxc10
24
fat distribution
16
hoxc10 mrna
12
mrna expression
12
fat
8
fat depot-specific
8
adverse fat
8
distribution metabolic
8
developmental genes
8
body fat
8

Similar Publications

Expression Is an Independent Prognostic Biomarker in Esophageal Squamous Cell Carcinoma.

Genes (Basel)

November 2024

Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, RJ, Brazil.

Article Synopsis
  • Homeobox genes are important for organ development and differentiation, and in humans, they are divided into four clusters (HOXA, HOXB, HOXC, HOXD).
  • This study focused on the role of these genes in esophageal squamous cell carcinoma (ESCC), finding that while mutations were rare, seven specific homeobox genes were significantly different in ESCC tissues compared to non-cancerous ones.
  • The study revealed that these genes' dysregulation may affect cancer pathways and is linked to poor survival rates, suggesting their potential as prognostic biomarkers and targets for new therapies.
View Article and Find Full Text PDF

Expression Profiles, Prognosis, and ceRNA Regulation of SRY-Related HMG-Box Genes in Stomach Adenocarcinoma.

J Environ Pathol Toxicol Oncol

February 2023

Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.

Aberrant expression of the SRY-related HMG-box (SOX) genes contributes to tumor development and progression. This research aimed to identify the regulation of the SOX genes in stomach adenocarcinoma (STAD). Expression profiles downloaded from The Cancer Genome Atlas (TCGA) were conducted to analyze the expression and function of the SOX genes.

View Article and Find Full Text PDF
Article Synopsis
  • Self-renewal of spermatogonial stem cells is crucial for male fertility, but the mechanisms behind it are not fully understood.
  • Research shows that DOT1L, a methyltransferase for histone H3K79, is necessary for the self-renewal of these stem cells; mice without DOT1L lose spermatogonial stem cells and face fertility issues.
  • DOT1L regulates the expression of certain transcription factors and influences epigenetic changes essential for maintaining spermatogonial stem cells in adult males.
View Article and Find Full Text PDF

Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!