Pancreatic adenocarcinoma (PDAC) and chronic pancreatitis (CP) are characterized by a desmoplastic reaction involving activated pancreatic stellate cells (PSCs). However, the mechanisms of PSC activation remain poorly understood. We examined whether the epithelial-mesenchymal transition (EMT) process might play a role in PSC activation. PSCs were isolated from a rat pancreas and characterized using immunofluorescence and immunocytochemistry. We evaluated changes in cell motility and in the expression levels of a panel of EMT-related genes during the PSC activation process. Activation of PSCs occurred after 48 h of in vitro culture, as indicated by a morphological change to a myofibroblastic shape and a decrease in the number of cytoplasmic lipid droplets. After activation, PSCs showed enhanced cell migration ability compared to quiescent cells. In addition, the expression of epithelial markers (E-cadherin, BMP7 and desmoplakin) decreased, while expression of mesenchymal markers (N-cadherin, vimentin, fibronectin1, collagen1α1 and S100A4) increased in activated PSCs. EMT-related transcription factors (Snail and Slug) were also upregulated after PSC activation. The concurrent increase in cell migration ability and alterations in EMT-related gene expression suggests that the activation of PSCs involves an EMT-like process. The knowledge that PSC activation involves an EMT‑like process may help to identify potential new therapeutic targets to alleviate pancreatic fibrosis in diseases like CP and PDAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2015.3282 | DOI Listing |
Sci Rep
January 2025
Department of Electrical and Computer Engineering, Aarhus University, Aarhus, 8200, Denmark.
Significant progress has been made through the optimization of modelling and device architecture solar cells has proven to be a valuable and highly effective approach for gaining a deeper understanding of the underlying physical processes in solar cells. Consequently, this research has conducted a two-dimensional (2D) perovskite solar cells (PSCs) simulation to develop an accurate model. The approach utilized in this study is based on the finite element method (FEM).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.
SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA.
The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency.
View Article and Find Full Text PDFBMJ Open
January 2025
National Institute of Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC) Center for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, England, UK
Introduction: Primary sclerosing cholangitis (PSC) is the classical hepatobiliary manifestation of inflammatory bowel disease (IBD). The strong association between gut and liver inflammation has driven several pathogenic hypotheses to which the intestinal microbiome is proposed to contribute. Pilot studies of faecal microbiota transplantation (FMT) in PSC and IBD are demonstrated to be safe and associated with increased gut bacterial diversity.
View Article and Find Full Text PDFJ Transl Autoimmun
June 2025
Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
Background: Autoimmune liver diseases (AILDs) encompass autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The onset of these diseases is fundamentally influenced by genetic susceptibility. Although various extrahepatic factors are potentially linked to AILDs, the genetic underpinnings and mechanisms of these associations remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!