Single-gene mutations that extend longevity have revealed regulatory pathways related to aging and longevity. RPD3 is a conserved histone deacetylase (Class I HDAC). Previously we showed that Drosophila rpd3 mutations increase longevity. Here we tested the longevity effects of RPD3 on multiple nutrient levels. Dietary restriction (DR) has additive effects on RPD3-mediated longevity extension, but the effect may be modestly attenuated relative to controls. RPD3 and DR therefore appear to operate by distinct but interacting mechanisms. Since RPD3 regulates transcription, the mRNA levels for two proteins involved in nutrient signaling, 4E-BP and Tor, were examined in rpd3 mutant flies. 4E-BP mRNA was reduced under longevity-increasing conditions. Epistasis between RPD3 and 4E-BP with regard to longevity was then tested. Flies only heterozygous for a mutation in Thor, the 4E-BP gene, have modestly decreased life spans. Flies mutant for both rpd3 and Thor show a superposition of a large RPD3-mediated increase and a small Thor-mediated decrease in longevity at all food levels, consistent with each gene product having distinct effects on life span. However, DR-mediated extension was absent in males carrying both mutations and lessened in females. Our results support the view that multiple discrete but interacting mechanisms regulate longevity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712336 | PMC |
http://dx.doi.org/10.18632/aging.100856 | DOI Listing |
Plant Physiol Biochem
December 2024
Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:
Radish is an economically important root vegetable crop worldwide. Histone deacetylases (HDACs), one of the most important epigenetic regulators, play prominent roles in plant growth and development as well as abiotic stress responses. Nevertheless, the systematical characterization and critical roles of HDAC gene members in thermogenesis remains elusive in radish.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany.
As a first step in eukaryotic ribosome biogenesis RNA polymerase (Pol) I synthesizes a large ribosomal RNA (rRNA) precursor from multicopy rRNA gene loci. This process is essential for cellular growth and regulated in response to the cell's physiological state. rRNA gene transcription is downregulated upon growth to stationary phase in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
Insect developmental transitions are precisely coordinated by ecdysone and juvenile hormone (JH). We previously revealed that accumulated H3K27 trimethylation (H3K27me3) at the locus encoding JH signal transducer Hairy is involved in the larval-pupal transition in insects, but the underlying mechanism remains to be fully defined. Here, we show in and that Rpd3-mediated H3K27 deacetylation in the prothoracic gland during the last larval instar promotes ecdysone biosynthesis and the larval-pupal transition by enabling H3K27me3 accumulation at the locus to induce its transcriptional repression.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Sci Adv
April 2024
Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!