Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672681 | PMC |
http://dx.doi.org/10.1038/sdata.2015.72 | DOI Listing |
Planta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
Rapeseed ( L.) is a major agricultural crop with diverse applications, particularly in the production of seed oil for both culinary use and biodiesel. However, its photosynthetic efficiency, a pivotal determinant of yield, remains relatively low compared with other C plants such as rice and soybean, highlighting the necessity of identifying the genetic loci and genes regulating photosynthesis in rapeseed.
View Article and Find Full Text PDFSci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Plant Physiol Biochem
December 2024
Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Electronic address:
Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance.
View Article and Find Full Text PDFPlant Physiol
December 2024
Department of Biology, BNL 463, 50 Bell Ave, Upton NY 11973, USA.
In eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!