Structural Phase Transitions by Design in Monolayer Alloys.

ACS Nano

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.

Published: January 2016

Two-dimensional monolayer materials are a highly anomalous class of materials under vigorous exploration. Mo- and W-dichalcogenides are especially unusual two-dimensional materials because they exhibit at least three different monolayer crystal structures with strongly differing electronic properties. This intriguing yet poorly understood feature, which is not present in graphene, may support monolayer phase engineering, phase change memory and other applications. However, knowledge of the relevant phase boundaries and how to engineer them is lacking. Here we show using alloy models and state-of-the-art density functional theory calculations that alloyed MoTe2-WTe2 monolayers support structural phase transitions, with phase transition temperatures tunable over a large range from 0 to 933 K. We map temperature-composition phase diagrams of alloys between pure MoTe2 and pure WTe2, and benchmark our methods to analogous experiments on bulk materials. Our results suggest applications for two-dimensional materials as phase change materials that may provide scale, flexibility, and energy consumption advantages.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b04359DOI Listing

Publication Analysis

Top Keywords

structural phase
8
phase transitions
8
two-dimensional materials
8
phase change
8
phase
7
materials
6
transitions design
4
monolayer
4
design monolayer
4
monolayer alloys
4

Similar Publications

The formation of non-ion conducting byproducts on zinc anode is notoriously detrimental to aqueous zinc-ion batteries (AZIBs). Herein, we successfully transform a representative detrimental byproduct, crystalline zinc hydroxide sulfate (ZHS) to fast-ion conducting solid-electrolyte interphase (SEI) via amorphization and fluorination induced by suspending CaF nanoparticles in dilute sulfate electrolytes. Distinct from widely reported nonhomogeneous organic-inorganic hybrid SEIs that exhibit structural and chemical instability, the designed single-phase SEI is homogeneous, mechanically robust, and chemically stable.

View Article and Find Full Text PDF

Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.

View Article and Find Full Text PDF

Understanding topological defects-controlled structural degradation of layered oxides-a key cathode material for high-performance lithium-ion batteries-plays a critical role in developing next-generation cathode materials. Here, by constructing a nanobattery in an electron microscope enabling atomic-scale monitoring of electrochemcial reactions, we captured the electrochemically driven atomistic dynamics and evolution of dislocations-a most important topological defect in material. We deciphered how dislocations nucleate, move, and annihilate within layered cathodes at the atomic scale.

View Article and Find Full Text PDF

Under extreme conditions, condensed matters are subject to undergo a phase transition and there have been many attempts to find another form of hydroxide stabilized over HO. Here, using Density Functional Theory (DFT)-based crystal structure prediction including zero-point energy, it is that proton superoxide (HO), the lightest superoxide, can be stabilized energetically at high pressure and temperature conditions. HO is metallic at high pressure, which originates from the 𝜋 orbitals overlap between adjacent superoxide anions (O ).

View Article and Find Full Text PDF

Unraveling the Meaning of Effective Uptake Coefficients in Multiphase and Aerosol Chemistry.

Acc Chem Res

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!