Purpose: Nutrition is indispensable for cell survival and proliferation. Thus, loss of nutrition caused by serum starvation in cells could induce formation of reactive oxygen species (ROS), resulting in cell death. Liquiritigenin (LQ) is an active flavonoid in licorice and plays a role in the liver as a hepatic protectant.

Methods: This study investigated the effect of LQ, metformin [an activator of activated AMP-activated protein kinase (AMPK)] and GW4064 [a ligand of farnesoid X receptor (FXR)] on mitochondrial dysfunction and oxidative stress induced by serum deprivation as well as its molecular mechanism, as assessed by immunoblot and flow cytometer assays.

Results: Serum deprivation in HepG2, H4IIE and AML12 cells successfully induced oxidative stress and apoptosis, as indicated by depletion of glutathione, formation of ROS, and altered expression of apoptosis-related proteins such as procaspase-3, poly(ADP-ribose) polymerase, and Bcl-2. However, LQ pretreatment significantly blocked these pathological changes and mitochondrial dysfunction caused by serum deprivation. Moreover, LQ activated AMPK in HepG2 cells and mice liver, as shown by phosphorylation of AMPK and ACC, and this activation was mediated by its upstream kinase (i.e., LKB1). Experiments using a chemical inhibitor of AMPK with LKB1-deficient Hela cells revealed the role of the LKB1-AMPK pathway in cellular protection conferred by LQ. LQ also induced protein and mRNA expression of both FXR as well as small heterodimer partner, which is important since treatment with FXR ligand GW4064 protected hepatocytes against cell death and mitochondrial damage induced by serum deprivation.

Conclusion: AMPK activators such as LQ can protect hepatocytes against oxidative hepatic injury and mitochondrial dysfunction induced by serum deprivation, and the beneficial effect might be mediated through the LKB1 pathway as well as FXR induction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-015-1107-7DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
16
serum deprivation
16
induced serum
12
oxidative hepatic
8
hepatic injury
8
injury mitochondrial
8
dysfunction induced
8
farnesoid receptor
8
caused serum
8
cell death
8

Similar Publications

Multiomics unravels the complexity of male obesity: a prospective observational study.

J Transl Med

January 2025

Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.

Background: Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach.

Methods: Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed.

View Article and Find Full Text PDF

Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics.

Clinics (Sao Paulo)

January 2025

Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil. Electronic address:

Mitochondria are dynamic organelles essential for vital cellular functions, including ATP production, apoptosis regulation, and calcium homeostasis. Increasing research has highlighted the significance of mitochondrial DNA (mtDNA) content and alterations in the development and progression of various diseases, including cancer. The high mutation rate and vulnerability of mtDNA to damage make these alterations valuable biomarkers for cancer diagnosis, monitoring disease progression, detecting metastasis, and predicting treatment resistance across different tumor types.

View Article and Find Full Text PDF

Estrogen-related receptor gamma is a regulator of mitochondrial, autophagy, and immediate-early gene programs in spiny projection neurons: Relevance for transcriptional changes in Huntington disease.

Neurobiol Dis

January 2025

Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA. Electronic address:

Mitochondrial dysfunction, transcriptional dysregulation, and protein aggregation are hallmarks of multiple neurodegenerative disorders, including Huntington's disease (HD). Strategies are needed to counteract these processes to restore neuronal health and function in HD. Recent evidence indicates that the transcription factor estrogen-related receptor gamma (ERRγ/Esrrg) is required for normal expression of mitochondrial, synaptic, and autophagy genes in neurons.

View Article and Find Full Text PDF

Qiangji Decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

J Ethnopharmacol

January 2025

Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:

Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.

Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

View Article and Find Full Text PDF

Overexpression, Biophysical and Functional Characterization of a Recombinant FGF21 (rFGF21).

Biophys Rep (N Y)

January 2025

Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:

Fibroblast Growth Factor 21 (FGF21) is an endocrine FGF that plays a vital role in regulating essential metabolic pathways. FGF21 increases glucose uptake by cells, promotes fatty acid oxidation, reduces blood glucose levels, and alleviates metabolic diseases. However, detailed studies on its stability and biophysical characteristics have not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!