The enzymatic conversion of progesterone and testosterone by the enzyme 5alpha-reductase exerts a crucial role in the control of nervous function. The effects of finasteride in the brain, an inhibitor of this enzyme used for the treatment of human benign prostatic hyperplasia and androgenic alopecia, have been poorly explored. Therefore, the effects of a subchronic treatment with finasteride at low doses (3 mg/kg/day) and the consequences of its withdrawal on neuroactive steroid levels in plasma, cerebrospinal fluid and some brain regions as well as on the expression of classical and non-classical steroid receptors have been evaluated in male rats. After subchronic treatment (i.e., for 20 days) the following effects were detected: (i) depending on the compartment considered, alteration in the levels of neuroactive steroids, not only in 5alpha-reduced metabolites but also in its precursors and in neuroactive steroids from other steroidogenic pathways and (ii) an upregulation of the androgen receptor in the cerebral cortex and beta3 subunit of the GABA-A receptor in the cerebellum. One month after the last treatment (i.e., withdrawal period), some of these effects persisted (i.e., the upregulation of the androgen receptor in the cerebral cortex, an increase of dihydroprogesterone in the cerebellum, a decrease of dihydrotestosterone in plasma). Moreover, other changes in neuroactive steroid levels, steroid receptors (i.e., an upregulation of the estrogen receptor alpha and a downregulation of the estrogen receptor beta in the cerebral cortex) and GABA-A receptor subunits (i.e., a decrease of alpha 4 and beta 3 mRNA levels in the cerebral cortex) were detected. These findings suggest that finasteride treatment may have broad consequences for brain function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000442982DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
16
neuroactive steroid
12
steroid levels
12
effects subchronic
8
finasteride treatment
8
treatment withdrawal
8
withdrawal neuroactive
8
subchronic treatment
8
steroid receptors
8
neuroactive steroids
8

Similar Publications

Effects of noise and metabolic cost on cortical task representations.

Elife

January 2025

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.

Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits.

View Article and Find Full Text PDF

Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.

View Article and Find Full Text PDF

The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (EN.

View Article and Find Full Text PDF

Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.

View Article and Find Full Text PDF

Background: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.

Methodology: A systematic search was conducted across Web of Science, PubMed, and Google Scholar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!