A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. | LitMetric

Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.

BMC Genomics

Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA.

Published: December 2015

Background: Sorghum is a versatile cereal crop, with excellent heat and drought tolerance. However, it is susceptible to early-season cold stress (12-15 °C) which limits stand-establishment and seedling growth. To gain further insights on the molecular mechanism of cold tolerance in sorghum we performed transcriptome profiling between known cold sensitive and tolerant sorghum lines using RNA sequencing technology under control and cold stress treatments.

Results: Here we report on the identification of differentially expressed genes (DEGs) between contrasting sorghum genotypes, HongkeZi (cold tolerant) and BTx623 (cold sensitive) under cool and control temperatures using RNAseq approach to elucidate the molecular basis of sorghum response to cold stress. Furthermore, we validated bi-allelic variants in the form of single nucleotide polymorphism (SNPs) between the cold susceptible and tolerant lines of sorghum. An analysis of transcriptome profile showed that in response to cold, a total of 1910 DEGs were detected under cold and control temperatures in both genotypes. We identified a subset of genes under cold stress for downstream analysis, including transcription factors that exhibit differential abundance between the sensitive and tolerant genotypes. We identified transcription factors including Dehydration-responsive element-binding factors, C-repeat binding factors, and Ethylene responsive transcription factors as significantly upregulated during cold stress in cold tolerant HKZ. Additionally, specific genes such as plant cytochromes, glutathione s-transferases, and heat shock proteins were found differentially regulated under cold stress between cold tolerant and susceptible genotype of sorghum. A total of 41,603 SNP were identified between the cold sensitive and tolerant genotypes with minimum read of four. Approximately 89 % of the 114 SNP sites selected for evaluation were validated using endpoint genotyping technology.

Conclusion: A new strategy which involved an integrated analysis of differential gene expression and identification of bi-allelic single nucleotide polymorphism (SNP) was conducted to determine and analyze differentially expressed genes and variation involved in cold stress response of sorghum. The results gathered provide an insight into the complex mechanisms associated with cold response in sorghum, which involve an array of transcription factors and genes which were previously related to abiotic stress response. This study also offers resource for gene based SNP that can be applied towards targeted genomic studies of cold tolerance in sorghum and other cereal crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673766PMC
http://dx.doi.org/10.1186/s12864-015-2268-8DOI Listing

Publication Analysis

Top Keywords

cold stress
32
cold
20
transcription factors
16
single nucleotide
12
cold sensitive
12
sensitive tolerant
12
cold tolerant
12
sorghum
11
stress
9
transcriptome profiling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!