Regulation of the Water Channel Aquaporin-2 via 14-3-3θ and -ζ.

J Biol Chem

From the Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, 8000 Aarhus, Denmark,

Published: January 2016

The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732228PMC
http://dx.doi.org/10.1074/jbc.M115.691121DOI Listing

Publication Analysis

Top Keywords

mpkccd14 cells
16
aqp2
12
increased aqp2
12
water channel
8
channel aquaporin-2
8
14-3-3θ -ζ
8
proteins interact
8
mouse kidney
8
co-ip studies
8
aqp2/14-3-3 interaction
8

Similar Publications

Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct.

View Article and Find Full Text PDF

SUMOylation Landscape of Renal Cortical Collecting Duct Cells.

J Proteome Res

October 2019

InterPrET Center, Department of Biomedicine , Aarhus University, Aarhus DK-8000 , Denmark.

Protein post-translational modification by the small ubiquitin-like modifier (SUMO) is a mechanism that allows a diverse response of cells to stress. Five SUMO family members, SUMO1-5, are expressed in mammals. We hypothesized that because kidney epithelial cells are often subject to stresses arising from various physiological conditions, multiple proteins in the kidney will be SUMOylated.

View Article and Find Full Text PDF

Aquaporin 2 (AQP2) mediates the osmotic water permeability of the kidney collecting duct in response to arginine vasopressin (VP) and is essential for body water homeostasis. VP effects on AQP2 occur via long-term alterations in AQP2 abundance and short-term changes in AQP2 localization. Several of the effects of VP on AQP2 are dependent on AQP2 phosphorylation and ubiquitylation; post-translational modifications (PTM) that modulate AQP2 subcellular distribution and function.

View Article and Find Full Text PDF

Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2.

View Article and Find Full Text PDF

Apical membrane targeting of the collecting duct water channel aquaporin-2 (AQP2) is essential for body water balance. As this event is regulated by Gs coupled 7-transmembrane receptors such as the vasopressin type 2 receptor (V2R) and the prostanoid receptors EP2 and EP4, it is believed to be cAMP dependent. However, on the basis of recent reports, it was hypothesized in the current study that increased cAMP levels are not necessary for AQP2 membrane targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!