Selective serotonin reuptake inhibitors (SSRIs) represent the most common treatment for major depression. However, their efficacy is variable and incomplete. In order to elucidate the cause of such incomplete efficacy, we explored the hypothesis positing that SSRIs may not affect mood per se but, by enhancing neural plasticity, render the individual more susceptible to the influence of the environment. Consequently, SSRI administration in a favorable environment promotes a reduction of symptoms, whereas in a stressful environment leads to a worse prognosis. To test such hypothesis, we exposed C57BL/6 mice to chronic stress in order to induce a depression-like phenotype and, subsequently, to fluoxetine treatment (21 days), while being exposed to either an enriched or a stressful condition. We measured the most commonly investigated molecular, cellular and behavioral endophenotypes of depression and SSRI outcome, including depression-like behavior, neurogenesis, brain-derived neurotrophic factor levels, hypothalamic-pituitary-adrenal axis activity and long-term potentiation. Results showed that, in line with our hypothesis, the endophenotypes investigated were affected by the treatment according to the quality of the living environment. In particular, mice treated with fluoxetine in an enriched condition overall improved their depression-like phenotype compared with controls, whereas those treated in a stressful condition showed a distinct worsening. Our findings suggest that the effects of SSRI on the depression- like phenotype is not determined by the drug per se but is induced by the drug and driven by the environment. These findings may be helpful to explain variable effects of SSRI found in clinical practice and to device strategies aimed at enhancing their efficacy by means of controlling environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378807 | PMC |
http://dx.doi.org/10.1038/mp.2015.142 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFJ Community Genet
January 2025
Graduate Program in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
In 2018, Portuguese researchers proposed the "Tool for Quality Assessment of Genetic Counseling," a 5-point Likert scale comprising 50 items across five dimensions, designed to assess genetic counseling from the professional's perspective. This descriptive, cross-sectional study aimed to adapt this tool to Brazilian Portuguese, validate it among Brazilian clinical geneticists, and conduct a preliminary assessment of the quality of genetic counseling in Brazil. The adaptation process involved expert-driven content validation and calculation of the Content Validity Index (CVI) to ensure equivalence between the original and adapted versions.
View Article and Find Full Text PDFGeroscience
January 2025
Buck Institute for Research On Aging, Novato, CA, 94945, USA.
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!