Enterobacterial repetitive intergenic consensus (ERIC) PCR based genetic diversity of Xanthomonas spp. and its relation to xanthan production.

Iran J Microbiol

National Laboratory of Industrial Microbiology, Department of Biology, Faculty of science, Alzahra University, Tehran, Iran.

Published: February 2015

Background And Objective: The genus Xanthomonas is composed of phytopathogenic bacterial species. In addition to causing crops diseases, most of the Xanthomonas species especially Xanthomonas campestris produce xanthan gum via an aerobic fermentation process. Xanthan gum is, an important exopolysaccharide from Xanthomonas campestris, mainly used in the food, petroleum and other industries. the purpose of this study was assessment of relationship between genetic diversity and xanthan production in Xanthomonas spp.

Materials And Methods: In this study 15 strains of Xanthomonas spp. which had previously been isolated from soils of vegetable farms, were discriminated from each other using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and 16S rDNA sequencing methods. Xanthan production of strains was measured in 250 ml flask. The results of ERIC PCR and xanthan production was compared.

Results: ERIC-PCR patterns not only could differentiate all Xanthomonas campestis from the control i.e. Xanthomonas translucent but also discriminate strains of Xanthomonas to three clusters with 40% similarity based on Jaccard's coefficient. This clustering of the strains was in agreement with other characteristics including xanthan production and biochemical features.

Discussion: The results showed that genomic fingerprinting conferred adequate genetic data for discriminating between strains of the species Xanthomonas campestris. The data indicated a partial relationship between ERIC-PCR patterns and xanthan production by the strains.

Conclusion: Further development of experiments may result in making good prediction about xanthan production capability of the Xanthomonas strains on the basis of ERIC-PCR method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670466PMC

Publication Analysis

Top Keywords

xanthan production
28
eric pcr
12
xanthomonas
12
xanthomonas campestris
12
xanthan
9
enterobacterial repetitive
8
repetitive intergenic
8
intergenic consensus
8
consensus eric
8
genetic diversity
8

Similar Publications

Efficient stabilizing effect of low-dose zein/xanthan gum nanoparticles at the oil-water interface.

Int J Biol Macromol

January 2025

Department of Nutrition and Health, China Agricultural University, Beijing 100193, China. Electronic address:

The inherent propensity for aggregation necessitates the use of high concentrations of protein-polysaccharide nanoparticles to achieve stable Pickering emulsions. This study employed xanthan gum (XG) to mitigate the pronounced aggregation of zein nanoparticles by structure construction, thereby enhancing the emulsifying efficiency of zein/XG (Z/XG) nanoparticles. The Z/XG nanoparticles displayed significantly enhanced dispersity, with the absolute ζ-potential increasing from 6.

View Article and Find Full Text PDF

Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.

View Article and Find Full Text PDF

Influence of the addition of gum arabic and xanthan gum in the preparation of sodium alginate microcapsules coated with chitosan hydrochloride on the survival of Lacticaseibacillus rhamnosus GG.

Int J Biol Macromol

December 2024

Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil. Electronic address:

The microencapsulation of Lactocaseibacillus rhamnosus GG in a matrix of sodium alginate, xanthan gum, gum arabic and chitosan hydrochloride is a promising strategy for protecting this probiotic during passage through the gastrointestinal tract. This study evaluated the influence on the viability of Lactocaseibacillus rhamnosus GG encapsulated with these polymers by external ionic gelation with vibratory extrusion and the microcapsules that showed the best results of capsulation efficiency, viability, size and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and exposure to environmental stress conditions and gastrointestinal simulation. The result revealed encapsulation efficiency values above 95 % for all formulations and survival rate higher than 6 log CFU/mL for most analyzed groups.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional in-situ hydrocarbon remediation technologies struggle with high costs and limited effectiveness, making aqueous foam injection a more promising solution for better volumetric sweeping efficiency.
  • This study focuses on polymer-enhanced foams (PEFs), specifically examining how Xanthan Gum (XG) biopolymer affects foam stability and flow in contaminated soils, using two types of PEFs: one based on Sodium Dodecyl Sulfate (SDS) and another blending SDS with Cocamidopropyl Hydroxysultane (SC).
  • Results show that XG enhances foam stability through increased viscosity and improved interactions with surfactants, leading to higher recovery rates of hydrocarbons compared to traditional methods, suggesting a valuable avenue for future remediation efforts
View Article and Find Full Text PDF

Enhancing stability of fermented egg white gels: Influence of guar and xanthan gum addition order during yogurt-like fermentation.

Int J Biol Macromol

December 2024

School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia. Electronic address:

Egg white gels prepared through fermentation, similar to yogurt production, offer a high-protein, zero-fat alternative to traditional dairy products. This study investigated the impact of guar gum (GG) and xanthan gum (XG) as rheological modifiers on the stability of fermented egg white gels. Rheological analysis revealed that the addition of both gums significantly influenced gel properties, with XG demonstrating superior performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!