Developing high-quality mouse monoclonal antibodies for neuroscience research - approaches, perspectives and opportunities.

N Biotechnol

Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA 95616, United States. Electronic address:

Published: September 2016

High-quality antibodies (Abs) are critical to neuroscience research, as they remain the primary affinity proteomics reagent used to label and capture endogenously expressed protein targets in the nervous system. As in other fields, neuroscientists are frequently confronted with inaccurate and irreproducible Ab-based results and/or reporting. The UC Davis/NIH NeuroMab Facility was created with the mission of addressing the unmet need for high-quality Abs in neuroscience research by applying a unique approach to generate and validate mouse monoclonal antibodies (mAbs) optimized for use against mammalian brain (i.e., NeuroMabs). Here we describe our methodology of multi-step mAb screening focused on identifying mAbs exhibiting efficacy and specificity in labeling mammalian brain samples. We provide examples from NeuroMab screens, and from the subsequent specialized validation of those selected as NeuroMabs. We highlight the particular challenges and considerations of determining specificity for brain immunolabeling. We also describe why our emphasis on extensive validation of large numbers of candidates by immunoblotting and immunohistochemistry against brain samples is essential for identifying those that exhibit efficacy and specificity in those applications to become NeuroMabs. We describe the special attention given to candidates with less common non-IgG1 IgG subclasses that can facilitate simultaneous multiplex labeling with subclass-specific secondary antibodies. We detail our recent use of recombinant cloning of NeuroMabs as a method to archive all NeuroMabs, to unambiguously define NeuroMabs at the DNA sequence level, and to re-engineer IgG1 NeuroMabs to less common IgG subclasses to facilitate their use in multiplex labeling. Finally, we provide suggestions to facilitate Ab development and use, as to design, execution and interpretation of Ab-based neuroscience experiments. Reproducibility in neuroscience research will improve with enhanced Ab validation, unambiguous identification of Abs used in published experiments, and end user proficiency in Ab-based assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884554PMC
http://dx.doi.org/10.1016/j.nbt.2015.11.007DOI Listing

Publication Analysis

Top Keywords

mouse monoclonal
8
monoclonal antibodies
8
mammalian brain
8
neuromabs describe
8
efficacy specificity
8
brain samples
8
igg subclasses
8
subclasses facilitate
8
multiplex labeling
8
neuromabs
7

Similar Publications

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Immunohistochemical Analysis of a1-Acid Glycoprotein and Tumor Associated Macrophages in Clear Cell Renal Cell Carcinoma.

Cancer Genomics Proteomics

December 2024

Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;

Background/aim: α1-Acid glycoprotein (AGP), also known as orosomucoid, is an acute-phase protein that has been found increased in plasma of cancer patients. This study investigates the role of AGP expression in clear cell renal cell carcinoma (ccRCC) and its association with clinical outcomes.

Materials And Methods: We investigated the correlation between AGP levels and the prognosis of ccRCC through an analysis of The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Due to the high morbidity and mortality rates of invasive aspergillosis (IA) and the importance of early IA detection for successful treatment and subsequent outcome, this study aimed to determine a time course of detectable antigen in a mouse model of IA and correlate it with tissue invasion by using two novel monoclonal antibodies, 1D2 and 4E4, that can be used to detect the -derived glycoproteins. Immunocompromised mice were randomly divided into five groups: uninfected control, and inoculation with conidia from , , and . Conidia (2 × 10 cells/mL) were administered intravenously via tail vein injection.

View Article and Find Full Text PDF

Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.

View Article and Find Full Text PDF

Introduction: Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!