Mobile health technologies to detect physiological and simple-analyte biomarkers have been explored for the improvement and cost-reduction of healthcare services, some of which have been endorsed by the US FDA. Advancements in the investigations of non-invasive and minimally-invasive molecular biomarkers and biomarker candidates and the development of portable biomarker detection technologies have fuelled great interests in these new technologies for mhealth applications. But apart from the development of more portable biomarker detection technologies, key questions need to be answered and resolved regarding to the relevance, coverage, and performance of these technologies and the big data management issues arising from their wide spread applications. In this work, we analyzed the newly emerging portable biomarker detection technologies, the 664 non-invasive molecular biomarkers and the 592 potential minimally-invasive blood molecular biomarkers, focusing on their detection capability, affordability, relevance, and coverage. Our analysis suggests that a substantial percentage of these biomarkers together with the new technologies can be potentially used for a variety of disease conditions in mhealth applications. We further propose a new strategy for reducing the workload in the processing and analysis of the big data arising from widespread use of mhealth products, and discuss potential issues of implementing this strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672303PMC
http://dx.doi.org/10.1038/srep17854DOI Listing

Publication Analysis

Top Keywords

molecular biomarkers
12
portable biomarker
12
biomarker detection
12
detection technologies
12
mobile health
8
technologies
8
health technologies
8
development portable
8
mhealth applications
8
relevance coverage
8

Similar Publications

Interleukin-17A and Interleukin-17F Gene Polymorphisms in Egyptian Patients with Chronic Hepatitis C and Hepatocellular Carcinoma.

Asian Pac J Cancer Prev

January 2025

Department of Biochemistry, Biotechnology Research Institute, High Throughput Molecular and Genetic laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.

Objective: Interleukin IL-17A and IL-17F are critical cytokines involved in inflammatory processes. Genetic variations in IL-17A and IL-17F might be linked to chronic hepatitis C (CHC) and an increased risk of hepatocellular carcinoma (HCC), a cancer associated with long-term inflammation. This study aims to examine the relationship between specific polymorphisms in IL-17A (rs2275913) and IL-17F (rs763780) and their association with HCV-related HCC in an Egyptian population.

View Article and Find Full Text PDF

Background: LIN28, a highly conserved RNA-binding protein, regulate a wide variety of post-transcriptional cellular processes. The current study aimed to identify genetic variants of five single nucleotide polymorphisms (SNPs) in the LIN28B gene (rs221634, rs22163, rs314276, rs9404590, and rs12194974) and their association with Breast cancer.

Method: 220 patients and 230 controls were genotyped by the RFLP assay for Lin28B gene variants.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is a less common hematological malignancy in Indian people. It accounts for less than 5% of all leukemias. Information on genomic alteration in CLL is limited immunoglobulin heavy-chain variable region (IGHV) mutational status is considered the most reliable prognostic marker.

View Article and Find Full Text PDF

Background: Human Lung Carcinoma (LC) is among the most diagnosed cancers across the world among those non-small cell lung cancer (NSCLC) comprises about 85%. Next Generation Sequencing based detection of mutations are now well established in molecular oncology. With the advent of modern diagnostic methods, it is now well known that there are several mutations and gene rearrangements which are associated with the development of LC.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.

Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!