Sediment texture controls the spatial distribution of sedimentary organic matter (SOM) in the Vembanad Lake. Influences of marine derived organic matter (OM) on SOM decreased inner-wards in the northern part of the lake. However, SOM from the southern part of the lake was dominated by terrestrial OM. Marine-derived OM showed the highest affinity for the clay-sized fraction (<2 μm) of the sediment in the northern part of the lake. However, aged and humified soil-derived OM was predominant in the clay-sized fractions from the southern part. Alteration of sediment texture led to a change in the distribution pattern of SOM in the lake after bund construction. Human intervention and changes in land-use pattern were also found to influence the SOM content in the southern part of the lake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2015.11.013 | DOI Listing |
Environ Pollut
December 2024
Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria.
Fluorescence fingerprinting is a technique to uniquely characterize water samples based on their distinct composition of dissolved organic matter (DOM) measured via 3D fluorescence spectroscopy. It is an effective tool for monitoring the chemical composition of various water systems. This study examines a river affected by several municipal and industrial wastewater treatment plant (WWTP) effluents and aims to source-tracing them via fluorescence fingerprints based on parallel factor analysis (PARAFAC) components.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Centre for Marine Living Resources and Ecology (CMLRE), Kochi, Kerala, India; Central University of Kerala (CUK), Kasargod, Kerala, India.
This study investigated major contributors of the particulate organic matter (POM) using stable isotope ratios of particulate organic carbon (δC) and its relationship with phytoplankton composition during three seasons across six coast-offshore transects in the eastern Arabian Sea (EAS). Results revealed significant spatiotemporal variations, with elevated δC in coastal waters during the winter and summer monsoon (-22.40 ± 1.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!