A review of the impact of oxidative stress and some antioxidant therapies on renal damage.

Ren Fail

c Laboratorio de Investigación en Enfermedades Crónico Degenerativas, Departamento de Formación Básica Disciplinaria Y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Casco de Santo Tomas , México , D.F , México.

Published: December 2016

An increase in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to complications during chronic kidney disease (CKD). This increase essentially derives from the impairment of natural antioxidant systems of the organism. The resulting oxidative stress produces damage to kidney tissue, especially by affecting nephrons and more generally by disrupting the function and structure of the glomerulus and interstitial tubule. This leads to a rapid decline in the condition of the patient and finally renal failure. Possible causes of kidney tissue damage are explored, as are different therapies, especially those related to the administration of antioxidants.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0886022X.2015.1120097DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
kidney tissue
8
review impact
4
impact oxidative
4
stress antioxidant
4
antioxidant therapies
4
therapies renal
4
renal damage
4
damage increase
4
increase generation
4

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Enhancing metformin efficacy with cholecalciferol and taurine in diabetes therapy: Potential and limitations.

World J Diabetes

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.

View Article and Find Full Text PDF

Background: Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!