A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles. | LitMetric

Rational development of two flowthrough purification strategies for adenovirus type 5 and retro virus-like particles.

J Chromatogr A

LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal. Electronic address:

Published: December 2015

We report on the rational design and implementation of flowthrough (FT) platforms for purification of virus vectors (VVs) and virus-like particles (VLPs), combining anion-exchange polyallylamine membranes (Sartobind STIC) and core-shell octylamine resins (CaptoCore 700). In one configuration, the VV bulk is concentrated and conditioned with appropriate buffer in a ultra/diafiltration (UF/DF) unit prior to injection into the STIC chromatography membrane. The FT pool and an intermediate cut of the elution pool of the STIC membrane are admixed and directed to a second UF/DF. Finally, the retentate is injected into a CC700 packed bed adsorber where the purified VVs are collected in the FT pool, whereas the residual amount of DNA and host cell protein (HCP) are discarded in the eluate. The experimental recovery achieved with this downstream processing (DSP) platform is close to 100%, the DNA clearance is roughly a 4-log reduction, and the HCP level is reduced by 5 logs. The platform developed for VLP purification is simpler than the previous one, as the STIC membrane adsorber and CC700 bed are connected in series with no UF/DF unit in between. Experimentally, the FT scheme for VLP purification gave a recovery yield of 45% in the chromatography train; the experimental log reduction of DNA and HCP were 2.0 and 3.5, respectively. These results are in line with other purification strategies in the specific field of enveloped VLPs. Both DSP platforms were successfully developed from an initial design space of the binding of the major contaminant (DNA) to the two ligands, determined by surface plasmon resonance, which was subsequently scaled up and confirmed experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2015.11.037DOI Listing

Publication Analysis

Top Keywords

purification strategies
8
virus-like particles
8
uf/df unit
8
stic membrane
8
vlp purification
8
purification
5
rational development
4
development flowthrough
4
flowthrough purification
4
strategies adenovirus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!