Background: The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells.

Methods: MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured.

Results: The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment.

Conclusions: The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejh.12713DOI Listing

Publication Analysis

Top Keywords

bone marrow
16
maintain normal
16
marrow patients
12
normal hematopoietic
12
hematopoietic progenitor
12
patients' mscs
12
mscs
10
ability multipotent
8
multipotent mesenchymal
8
mesenchymal stromal
8

Similar Publications

Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) is a powerful, high-throughput technique for assessing chromatin accessibility and understanding epigenomic regulation. Neutrophils, as a crucial leukocyte type in immune responses, undergo substantial chromatin architectural changes during differentiation and activation, which significantly impact the gene expression necessary for their functions. ATAC-seq has been instrumental in uncovering key transcription factors in neutrophil maturation, revealing pathogen-specific epigenomic signatures, and identifying therapeutic targets for autoimmune diseases.

View Article and Find Full Text PDF

Macrophage infiltration and activation is a key factor in the progression of diabetic nephropathy (DN). However, aerobic glycolysis induced by m6A methylation modification plays a key role in M1-type activation of macrophages, but the specific mechanism remains unclear in DN. In this study, the expression of m6A demethylase Fto in bone marrow derived macrophages and primary kidney macrophages from db/db mice.

View Article and Find Full Text PDF

Multiple myeloma is a disease related to the proliferation of malignant plasma cells; in most patients, the disease is confined to the level of bone marrow. However, in a minority of patients, the malignant plasma cells are also localized outside the bone marrow, either at the level of peripheral blood (plasma cell leukemia) or at the level of soft tissues (extramedullary multiple myeloma). These two rare forms of aggressive MM (ultrahigh-risk (uHR) MM as MM leading to death within 24-36 months) are both associated with some molecular features and with a limited response to current treatments.

View Article and Find Full Text PDF

Background: Clonal mature B-cell lymphoproliferative disorders (B-LPDs) are a heterogeneous group of neoplasia characterized by the proliferation of mature B lymphocytes in the peripheral blood, bone marrow and/or lymphoid tissues. B-LPDs classification into different subtypes and their diagnosis is based on a multiparametric approach. However, accurate diagnosis may be challenging, especially in cases of ambiguous interpretation.

View Article and Find Full Text PDF

Background: Resistance to chemoimmunotherapy in patients with advanced non-small cell lung cancer (NSCLC) necessitates effective prognostic biomarkers. Although F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has shown potential for efficacy assessment, it has been mainly evaluated in immuno-monotherapy setting, lacking elaborations in the scenarios of immunotherapy combined with chemotherapy. To tackle this dilemma, we aimed to build a non-invasive PET/CT-based model for stratifying tumor heterogeneity and predicting survival in advanced NSCLC patients undergoing chemoimmunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!