Acetylation of nucleosome histones results in relaxation of DNA and its availability for the transcriptional regulators, and is generally associated with the enhancement of gene expression. Although it is well known that activation of a variety of pro-adaptive genes represents a key event in the development of brain hypoxic/ischemic tolerance, the role of epigenetic mechanisms, in particular histone acetylation, in this process is still unexplored. The aim of the present study was to investigate changes in acetylation of histones in vulnerable brain neurons using original well-standardized model of hypobaric hypoxia and preconditioning-induced tolerance of the brain. Using quantitative immunohistochemistry and Western blot, effects of severe injurious hypobaric hypoxia (SH, 180mm Hg, 3h) and neuroprotective preconditioning mode (three episodes of 360mm Hg for 2h spaced at 24h) on the levels of the acetylated proteins and acetylated H3 Lys24 (H3K24ac) in the neocortex and hippocampus of rats were studied. SH caused global repression of the acetylation processes in the neocortex (layers II-III, V) and hippocampus (CA1, CA3) by 3-24h, and this effect was prevented by the preconditioning. Moreover, hypoxic preconditioning remarkably increased the acetylation of H3K24 in response to SH in the brain areas examined. The preconditioning hypoxia without subsequent SH also stimulated acetylation processes in the neocortex and hippocampus. The moderately enhanced expression of the acetylated proteins in the preconditioned rats was maintained for 24h, whereas acetylation of H3K24 was intense but transient, peaked at 3h. The novel data obtained in the present study indicate that large activation of the acetylation processes, in particular acetylation of histones might be essential for the development of brain hypoxic tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2015.11.008 | DOI Listing |
Cell Signal
January 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.
View Article and Find Full Text PDFNeurochem Res
January 2025
Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.
Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: The primary objective of this study was to examine whether ARID1A mutations confer a fitness advantage to gastric cancer from an immunological perspective, along with elucidating the underlying mechanism. Additionally, we aimed to identify the clinical potential of combining epigenetic inhibitors with immune checkpoint inhibitors to improve the efficacy of immunotherapy for gastric cancer.
Methods: The correlation between ARID1A gene expression and gastric cancer patient survival was analyzed using the GEO dataset GSE62254.
Alzheimers Dement
December 2024
Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Background: Aging is a time-dependent deterioration of physiological functions that occurs in both humans and animals. Within the brain, aging cells gradually become dysfunctional through a complex interplay of intrinsic and extrinsic factors, ultimately leading to behavioral deficits and enhanced risk of neurodegenerative diseases such as Alzheimer's disease (AD). The characteristics of normal aging are distinct from those associated with age-related diseases and it is important to understand the processes that contribute to this pathological divergence.
View Article and Find Full Text PDFBackground: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!