Ultra-sensitive speciation analysis of mercury by CE-ICP-MS together with field-amplified sample stacking injection and dispersive solid-phase extraction.

Electrophoresis

Key Laboratory of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, P. R. China.

Published: April 2016

A simple dispersive solid-phase extraction (DSPE) used to extract and preconcentrate ultra-trace MeHg, EtHg and Hg(2+) from water sample, and a sensitive method for the simultaneous analysis of MeHg, EtHg and Hg(2+) by using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) with field-amplified sample stacking injection (FASI) were first reported in this study. The DSPE used thiol cotton particles as adsorbent, and is simple and effective. It can be used to extract and preconcentrate ultra-trace mercury compounds in water samples within 30 min with a satisfied recovery and no mercury species alteration during the process. The FASI enhanced the sensitivity of CE-ICP-MS with 25-fold, 29-fold and 27-fold for MeHg, EtHg and Hg(2+) , respectively. Using FASI-CE-ICP-MS together with DSPE, we have successfully determined ultra-trace MeHg, EtHg and Hg(2+) in tap water with a limits of quantification (LOQs) of 0.26-0.45 pg/mL, an RSD (n = 3) < 6% and a recovery of 92-108%. Ultra-high sensitivity, as well as much less sample and reagent consumption and low operating cost, make our method a valuable technique to the speciation analysis of ultra-trace mercury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201500460DOI Listing

Publication Analysis

Top Keywords

mehg ethg
16
ethg hg2+
16
speciation analysis
8
ce-icp-ms field-amplified
8
field-amplified sample
8
sample stacking
8
stacking injection
8
dispersive solid-phase
8
solid-phase extraction
8
extract preconcentrate
8

Similar Publications

Towards a better understanding of ethylmercury in the environment: Addressing propylation derivatization artifact and verifying its occurrence in Chinese wetlands.

Water Res

October 2024

Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China.

Ethylmercury (EtHg), similar to methylmercury (MeHg), is highly neurotoxic and bioaccumulative. Although recent studies suggested its occurrence in natural soils and sediments, the common propylation derivatization for EtHg analysis might generate EtHg artifacts, potentially leading to its overestimation in environmental samples. Furthermore, the extensive environmental prevalence of EtHg remains unverified, keeping its importance largely uncertain.

View Article and Find Full Text PDF

Synchronous influence of soil amendments on alkylmercury and methane emissions in mercury-contaminated paddy soil.

Sci Total Environ

October 2024

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Mercury (Hg) alkylation and methane (CH) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH emissions. However, the relevance between Hg alkylation and CH emissions, especially their simultaneous reduction strategies, remains poorly understood.

View Article and Find Full Text PDF

Organomercurials (RHg), especially methylmercury (MeHg) and ethylmercury (EtHg), are considered to be more neurotoxic than the inorganic counterpart (Hg). They cause massive DNA damage in cells, especially in neurons, where cellular glutathione (GSH) levels are significantly low. However, the mechanism by which RHg exerts massive DNA damage at cytotoxic concentrations in brain cells remains obscure.

View Article and Find Full Text PDF

Background: Trace levels of organic and inorganic lead and mercury species in the environment, including divalent lead (Pb), trimethyllead (TML), divalent mercury (Hg), monomethylmercury (MeHg), and ethylmercury (EtHg), are highly toxic to humans and ecology. It is of great importance for speciation of lead and mercury to evaluate the toxicity of lead and mercury and their biogeochemistry in the environment. However, simultaneous multi-elemental enrichment and speciation at trace level remains a challenge.

View Article and Find Full Text PDF

The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on FeO nanoparticles at room temperature without a catalyst within approximately 30 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!