A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tuning Endothelial Permeability with Functionalized Nanodiamonds. | LitMetric

Tuning Endothelial Permeability with Functionalized Nanodiamonds.

ACS Nano

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Published: January 2016

Cancer nanomedicine vehicles are required to cross the vascular barrier to reach the tumor site in order to ensure the successful delivery of their therapeutic load. Here, nanodiamond (ND) variants were shown to induce surface dependent vascular barrier leakiness. The ND-induced leakiness was found to be mediated by the increase in intracellular reactive oxygen species (ROS) and Ca(2+). These then in turn triggered the loss in endothelial cell-endothelial cell connections of the vascular barrier and also triggered their quasi-stable cytoskeletal remodelling. This ND driven increase in leakiness allowed more doxorubicin drug to penetrate through the vascular barrier to reach the cancer cells. This increase in the doxorubicin penetration subsequently led to an increase in the cancer killing effect. Overall, tuning the vascular barrier leakiness through ND surface group functionalization could provide an alternative strategy for the cancer nanomedicine to traverse across the vascular barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b06487DOI Listing

Publication Analysis

Top Keywords

vascular barrier
24
cancer nanomedicine
8
barrier reach
8
barrier leakiness
8
vascular
6
barrier
6
tuning endothelial
4
endothelial permeability
4
permeability functionalized
4
functionalized nanodiamonds
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!