Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies.

Microbiology (Reading)

Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland.

Published: February 2016

Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772740PMC
http://dx.doi.org/10.1099/mic.0.000220DOI Listing

Publication Analysis

Top Keywords

iron acquisition
20
iron
10
cystic fibrosis
8
fibrosis lung
8
pathogens
5
acquisition cystic
4
lung potential
4
potential novel
4
novel therapeutic
4
therapeutic strategies
4

Similar Publications

Antibody-recruiting molecules (ARMs) have emerged as a promising strategy for enhancing immune responses against pathogens and cancer cells. In this study, we developed a novel class of antibacterial ARMs utilizing siderophores, small iron-chelating compounds, as targeting motifs. Siderophores naturally exhibit high specificity for bacterial pathogens due to their role in iron acquisition, making them ideal candidates for selective targeting.

View Article and Find Full Text PDF

Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide.

View Article and Find Full Text PDF

Roman writers found the relative empowerment of Celtic women remarkable. In southern Britain, the Late Iron Age Durotriges tribe often buried women with substantial grave goods. Here we analyse 57 ancient genomes from Durotrigian burial sites and find an extended kin group centred around a single maternal lineage, with unrelated (presumably inward migrating) burials being predominantly male.

View Article and Find Full Text PDF

Sub-Chronic 30 mg/kg Iron Treatment Induces Spatial Cognition Impairment and Brain Oxidative Stress in Wistar Rats.

Biol Trace Elem Res

January 2025

Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.

Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.

View Article and Find Full Text PDF

A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.

J Magn Reson

January 2025

Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:

Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!