Systematic screening for optimal formulation composition and production parameters for nanosuspensions consumes a lot of time and also drug material when performed at lab scale. Therefore, a cost-effective miniaturized scale top down approach for nanocrystals production by wet bead milling was developed. The final set-up consisted of 3 magnetic stirring bars placed vertically one over the other in a 2 mL glass vial and agitated by a common magnetic stirring plate. All of the tested actives (cyclosporin A, resveratrol, hesperitin, ascorbyl palmitate, apigenin and hesperidin) could be converted to nanosuspensions. For 4 of them, the particles sizes achieved were smaller than previously reported on the literature (around 90 nm for cyclosporin A; 50 nm for hesperitin; 160 nm for ascorbyl palmitate and 80 nm for apigenin). The "transferability" of the data collect by the miniaturized method was evaluated comparing the production at larger scale using both wet bead milling and high pressure homogenization. Transferable information obtained from the miniaturized scale is minimum achievable size, improvements in size reduction by reduction of beads size, diminution kinetics and potentially occurring instabilities during processing. The small scale batches also allow identification of optimal stabilizer types and concentrations. The batch size is 0.5 mL, requiring approximately 50 mg or 5 mg of drug (5% and 1% suspension, respectively). Thus, a simple, accessible, low-cost miniaturized scale method for the production of pharmaceutical nanocrystals was established.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2015.11.047 | DOI Listing |
Sci Rep
January 2025
MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
We integrate monolayer TMDCs into silicon-on-insulation (SOI) waveguides and dielectric-loaded surface plasmon polariton (DLSPP) waveguides to enhance nonlinear parameters (γ) of silicon-based waveguides. By optimizing the waveguide geometry, we have achieved significantly improved γ. In MoSe-on-SOI and MoSe-in-DLSPP waveguide with optimized geometry, the maximum γ at the excitonic resonant peak (λ) is 5001.
View Article and Find Full Text PDFNat Commun
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Solutions for scalable, high-performance optical control are important for the development of scaled atom-based quantum technologies. Modulation of many individual optical beams is central to applying arbitrary gate and control sequences on arrays of atoms or atom-like systems. At telecom wavelengths, miniaturization of optical components via photonic integration has pushed the scale and performance of classical and quantum optics far beyond the limitations of bulk devices.
View Article and Find Full Text PDFALTEX
December 2024
Division of Applied Regulatory Science (DARS), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, MD, USA.
Microphysiological systems (MPS) are complex in vitro tools that incorporate cells derived from various healthy or disease-state human or animal tissues and organs. While MPS have limitations, including a lack of globally harmonized guidelines for standardization, they have already proven impactful in certain areas of drug development. Further research and regulatory acceptance of MPS will contribute to making them even more effective tools in the future.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
Optimizing multireagent assays often requires successive titration of individual components until the optimal combination of conditions is achieved. This process is time-consuming, laborious, and often expensive since parallelized experimentation requires bulk consumption of reagents. Microfluidics presents a solution through miniaturization of standard processes by reducing reaction volume, executing multiple parallel workflows, and enabling automation.
View Article and Find Full Text PDFSmall
December 2024
IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, Madrid, 28049, Spain.
Metal-Organic Frameworks (MOFs) attract attention for their intrinsic porosity, large surface area, and functional versatility. To fully utilize their potential in applications requiring precise control at smaller scales, it is essential to overcome challenges associated with their bulk form. This is particularly difficult for 3D MOFs with spin crossover (SCO) behavior, which undergo a reversible transition between high-spin and low-spin states in response to external stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!