Mammalian cells possess the molecular apparatus necessary to take up, degrade, synthesize, and release free d-aspartate, which plays an important role in physiological functions within the body. Here, biologically active microbial compounds and pre-existing drugs were screened for their ability to alter the intracellular d-aspartate level in mammalian cells, and several candidate compounds were identified. Detailed analytical studies suggested that two of these compounds, mithramycin A and geldanamycin, suppress the biosynthesis of d-aspartate in cells. Further studies suggested that these compounds act at distinct sites within the cell. These compounds may advance our current understanding of biosynthesis of d-aspartate in mammals, a whole picture of which remains to be disclosed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2015.11.073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!