In the present study, nine formulations (F1-F9) of alginate microspheres with metronidazole were prepared by the spray drying technique with using different drug:polymer ratio (1:2, 1:1, 2:1) and different sodium alginate concentration (1, 2, 3%). The obtained microspheres were characterized for size, morphology, drug loading, (potential and swelling degree. Mucoadhesive properties were examined using texture analyzer and three different models of adhesive layers--gelatin discs, mucin gel and porcine vaginal mucosa. In vitro drug release, mathematical release profile and physical state of microspheres were also evaluated. The obtained results indicate that sodium alginate is a suitable polymer for developing mucoadhesive dosage forms of metronidazole. The optimal formulation F3 (drug:polymer ratio 1:2 and 1% alginate solution) was characterized by the highest metronidazole loading and sustained drug release. The results of this study indicate promising potential of ALG microspheres as alternative dosage forms for metronidazole delivery.

Download full-text PDF

Source

Publication Analysis

Top Keywords

alginate microspheres
8
microspheres metronidazole
8
spray drying
8
drying technique
8
drugpolymer ratio
8
sodium alginate
8
drug release
8
dosage forms
8
forms metronidazole
8
microspheres
5

Similar Publications

Objectives: This study focuses on both the formulation of bio-based microspheres containing fampridine for the treatment of multiple sclerosis and provides an alternative to the commercially available product (Fampyra 10 mg, Biogen).

Materials And Methods: The encapsulation of fampridine was achieved using polyvinyl alcohol (PVA) and sodium alginate (Na-Alg) polymers. Glutaraldehyde (GA) and hydrochloric acid (HCI) were used as crosslinking agents.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!