The basic principle of liquisolid systems formulation lies in the conversion of the drug in a liquid state into an apparently dry, free-flowing and readily compressible powder by its blending (or spraying) with specific carriers and coating materials. The selection of the most suitable carrier and coating material depends especially on their values of flowable liquid retention potential (Φ), which is defined as the maximum mass of liquid that can be retained per unit mass of powder material, while maintaining an acceptable flowability. The presented work focused on the determination of the maximum amount of propylene glycol (PG), which can be retained by several selected carriers and coating materials while maintaining acceptable flow properties of the liquisolid powder blend. Granulated forms of magnesium aluminometasilicates (Neusilin® US2 and Neusilin® NS2N), dibasic calcium phosphate (Fujicalin®) and microcrystalline cellulose (Avicel® PH 101) were tested due to their frequent use. Powdered forms of magnesium aluminometasilicate (Neusilin® UFL2) and colloidal silica (Aerosil® 200) were used as common coating materials. From the evaluation of liquisolid mixtures with different amounts of liquid, it could be observed that 1 g of Neusilin® US2, Neusilin® UFL2, Neusilin® NS2N, Aerosil® 200, Fujicalin® and Avicel® PH 101 can retain 1.00, 0.97, 0.54, 0.04, 0.25 and 0.12 g of propylene glycol, respectively, while maintaining acceptable flowing properties for further processing.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!